Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-02T03:00:04.135Z Has data issue: false hasContentIssue false

Metamorphic GaInP-GaInAs Layers for Photovoltaic Applications

Published online by Cambridge University Press:  01 February 2011

A. W. Bett
Affiliation:
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, andreas.bett@ise.fraunhofer.de
C. Baur
Affiliation:
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, andreas.bett@ise.fraunhofer.de
F. Dimroth
Affiliation:
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, andreas.bett@ise.fraunhofer.de
J. Schöne
Affiliation:
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, andreas.bett@ise.fraunhofer.de Technische Fakultät der Christian-Albrechts-Universität zu Kiel, Kaiserstrasse 2, 24143 Kiel
Get access

Abstract

GaxIn1−xAs and GayIn1−yP layers were grown lattice mismatched to GaAs and Ge by low-pressure metal organic vapor phase epitaxy (LP-MOPVE). These materials are very promising for further increasing the efficiency of monolithic triple-junction solar cells. Different buffer layer structures were realized. Transmission electron microscopy and x-ray diffraction analysis were used to characterize the quality of the crystal. Both linear and step-graded buffers in GaxIn1−xAs were successfully used under an active solar cell structure. GayIn1−yP as buffer material showed a worse performance. Excellent solar cell performance was achieved for lattice mismatched single-, dual- and triple-junction solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, R. R., Fetzer, C. M., Colter, P. C., Edmondson, K. M., Ermer, J. H., Cotal, H. L., Yoon, H., Stavrides, A. P., Kinsey, G., Krut, D. D., and Karam, N. H., Proc. of 29th IEEE Photovoltaic Specialists Conference, 776781 (2002)‥Google Scholar
2. King, R. R., Fetzer, C. M., Edmondson, K. M., Law, D., Colter, P. C., Cotal, H. L., Sherif, R. A., Yoon, H., Isshiki, T., Krut, D. D., Kinsey, G. S., Ermer, J. H., Kurtz, S., Moriarty, T., Kiehl, J., Emery, K., Metzger, W. K., Ahrenkiel, R. K., and Karam, N. H., Metamorphic III-V Materials, Sublattice Disorder, and Multijunction Solar Cells Approaches with over 37% Efficiency, In Proc. 19th European PVSC, 35873593 (2004).Google Scholar
3. Yamaguchi, M., Takamoto, T., Agui, T., Kaneiwa, M., Araki, K., Kondo, M., Uozumi, H., Hiramatus, M., Miyazaki, Y., Egami, T., Kemmoku, Y., and Ekins-Daukes, N. J., Japanese Activities of R&D on III-V Concentrator Solar Cells and Modules, In Proc. 19 European PVSEC 20142017 (2004).Google Scholar
4. Letay, G. and Bett, A. W., In Proc. 17th European Photovoltaic Solar Energy Conference, 178180 (2001).Google Scholar
5. Emery, K., Myers, D., and Kurtz, S., In Proc. 29th IEEE PVSC 840843 (2002).Google Scholar
6. Kurtz, S. R., Klem, J. F., Allerman, A. A., Sieg, R. M., Seager, C. H., and Jones, E. D., Appl. Phys. Lett. 80, 13791381 (2002).Google Scholar
7. Baur, C., Bett, A. W., Dimroth, F., Riesen, S. v., Kunert, B., Traversa, M., Volz, K., and Stolz, W., in Proc. WCPEC-3,. 667670 (2003).Google Scholar
8. Dimroth, F., Lanyi, P., Schubert, U., and Bett, A. W., Journal of Electronic Materials 29 4246 (2000).Google Scholar
9. Dimroth, F., Schubert, U., and Bett, A. W., IEEE Electron Device Letters 21 209211 (2000).Google Scholar
10. Dimroth, F., Lanyi, P., Meusel, M., Schubert, U., and Bett, A. W. In Proc. 16th European Photovoltaic Solar Energy Conference, 106109 (2000).Google Scholar
11. Sinharoy, S., Patton, M. O., Valko, T. M., and Weizer, V. G., Progr. Photovolt. 10 427432. (2002)Google Scholar
12. Gonzalez, D., Araujo, D., Aragon, G., and Garcia, R., Appl. Phys. Lett. 72 1875–7 (1998).Google Scholar
13. Romanato, F., Napolitani, E., Carnera, A., Drigo, A. V., Lazzarini, L., Salviati, G., Ferrari, C., Bosacchi, A., and Franchi, S., J. Appl. Phys. 86 4748–55 (1999).Google Scholar
14. Bulsara, M. T., Leitz, C., and Fitzgerald, E. A., Appl. Phys. Lett. 72 1608–10 (1998).Google Scholar
15. Araujo, D., Gonzalez, D., Garcia, R., Sacedon, A., and Calleja, E., Appl. Phys. Lett. 67 36323634 (1995).Google Scholar
16. King, R. R., Haddad, M., Isshiki, T., Colter, P., Ermer, J., Yoon, H., Joslin, D. E., and Karam, N. H., In Proc. Proceedings of 28th IEEE Photovoltaic Specialists Conference 982985 (2000).Google Scholar
17. Tanner, B. K., Parbrook, P. J., Whitehouse, C. R., Keir, A. M., Johnson, A. D., Jones, J., Wallis, D., Smith, L. M., Lunn, B., and Hogg, J. H. C., Appl. Phys. Lett. 77 21562158 (2000).Google Scholar
18. Yastrubchak, O., Wosiniski, T., Domagla, J. Z., LUsakowska, E., Figielski, T., Pecz, B., and Toth, A. L., Journal of Physics: Condensed Matter 16 S1-S8 (2004).Google Scholar
19. Bourhis, E. and Patriarche, G., Philosophical Magazin Letters 84 373381 (2004).Google Scholar
20. Green, M. A., Emery, K. A., King, D. L., Igari, S., and Warta, W., Progr. Photovolt. 12 365372 (2004).Google Scholar
21. Gordon, J. M., Katz, E. A., Feuermann, D., and Huleihil, M., Applied Physics Letters 84 36423644 (2004).Google Scholar
22. Riesen, S. v., and Bett, A. W., Degradation study of III-V solar cell for concentrator applications, accepted for publication in Progr. Photovolt (2005)Google Scholar