Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:44:41.155Z Has data issue: false hasContentIssue false

Metastability at the nanometer scale

Published online by Cambridge University Press:  21 February 2011

P.J. DESRÉ*
Affiliation:
Laboratoire de thermodynamique et physicochimie métallurgiques, Ecole Nationale supérieure d'Electrochimie et d'Electrométallurgie de Grenoble, BP75 38402, Saint Martin d'hères Cedex, France.
Get access

Abstract

Under constraints and at the nanometer scale, transitory metastable states can be generated in multicomponents materials. Examples illustrating such specific states are presented. They concern i) The crystalline nucleation in a growing undercooled liquid droplet formed from a liquid parent phase, ii) The suppression of intermetallic nucleation in solid solutions or glasses subjected to sharp concentration gradients, iii) The nanocrystalline transitory state preceding amorphisation by ball milling. In connection with this latter example, a thermodynamic model for the nanocrytal to glass transition, based on an hypothesis of a topological disorder wetting at the nanograin boundaries, is proposed. Thermodynamics - Nucleation - Phase transitions - nanocrystals - metallic glasses

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1 Gotze, W., Sjogren, L. Rep. Phys 55, 241, (1992)Google Scholar
2 Cahn, R.W., Greer, A.L., Metastable states of alloys Eds Cahn, R.W. & Haasen, P. ; Physical Metallurgy (1995).Google Scholar
3 Vinet, B., Thuillier, S. Private communication (1995)Google Scholar
4 Vinet, B., Cortella, L., Favier, J.J. and Desre, P.J. Appl. Phys. Lett. 58,1,(1991)Google Scholar
5 Cortella, L., Vinet, B., Desre, P.J., Pasturel, A., Paxton, A.T., Van Schilgaarde, M. Phys. Rev. Lett 70, 10 (1993).Google Scholar
6 Pasturel, A., Private communication (1995).Google Scholar
7 Van Aken, D.C., Fraser, H.L., Undercooled Alloy Phases p. 4B (1986), Eds. Collings, E.W., CCC Koch, TMS.Google Scholar
8 Cini, E., Private communication.Google Scholar
9 Edelstein, A.S., Everett, R.K., Richardson, G.Y., Qadri, S.B., Altman, E.I. Foley, J.C., Perepezko, J.H. J.Appl.Phys. 76,12 (1994) .Google Scholar
10 Perepezko, J.H., Composite Interfaces 1, 46, 463 (1993)Google Scholar
11 Desre, P.J., Yavari, A.R., Phys. Rev. Lett. 64,13(1990)Google Scholar
12 Desré, P.J., Yavari, A.R., J. of Alloy and Compound 194, 229234 (1993).Google Scholar
13 Guzak, A.M., Ukr. Phys. J. 5 (1990).Google Scholar
14 Hodaj, F., Desré, P.J., to be published.Google Scholar
15 Ducastelle, F., Proc. Coll. structural and phase stability of alloys, Trieste (1991).Google Scholar
16 Serebruakov, A., Mat. sci. Forum 88 (1992).Google Scholar
17 Desré, P.J., Nanostructure Materials 4, 8, 957 (1994).Google Scholar
18 Saunders, N., Calphad, 9, 4, 297 (1985).Google Scholar
19 Koch, C.C., Proc. of Metals and ALloys, Ed. Cahn, R.W., VCH (1991).Google Scholar
20 Eckert, J., Holzer, J.C., Krill, C.E., Johnson, W.L., Phil. Mag. B59-, 5, 577 (1989).Google Scholar