Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T19:31:12.986Z Has data issue: false hasContentIssue false

The Metastability of the EL2 and DX Defects in GaAs and 3-5 Alloys

Published online by Cambridge University Press:  25 February 2011

H.J. von Bardeleben
Affiliation:
Groupe de Physique des Solides de l’École Normale Supérieure, Centre National de la Recherche Scientifique°, Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France.
J.C. Bourgoin
Affiliation:
Groupe de Physique des Solides de l’École Normale Supérieure, Centre National de la Recherche Scientifique°, Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France.
Get access

Abstract

The metastability of the EL2 and DX defects in GaAs and Ga1-x AlxAs alloys is discussed in the context of recent hydrostatic pressure and photo-EPR results. A unified model is presented based on the metastable trapping of carriers in excited effective-mass (EM) states derived from secondary conduction band (CB) minima. The metastability is attributed to small lattice relaxation effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 “Recent Developments in the study of the EL2 defect in GaAs”, edited by von Bardeleben, H.J. and Pajot, B., Rev. Phys. Appl. 23, 727 (1988).Google Scholar
2 Vincent, G., Bois, D. and Chantre, A., J. Appl. Phys. 53, 3643 (1982).Google Scholar
3 von Bardeleben, H.J., Stievenard, D., Deresraes, D., Huber, A. and Bourgoin, J.C., Phys. Rev. B 34, 7192 (1986).Google Scholar
4 Delerue, D., Lannoo, M., Stievenard, D., von Bardeleben, H.J. and Bourgoin, J.C., Phys. Rev. Lett. 59, 2875 (1987).Google Scholar
5 Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar
6 Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 60, 2187 (1988).Google Scholar
7 Fujisawa, T., Kristofik, J., Yoshino, J. and Kukimoto, H., Japan J. Appl. Phys. 27, L2373 (1988).Google Scholar
8 Theis, T.N., Kuech, T.F., Palmateer, L.F. and Mooney, P.M., Inst. Phys. Conf. Ser. 74, 241 (1985).Google Scholar
9 Mizuta, M. and Mori, K., Phys. Rev. B 37, 1043 (1988).Google Scholar
10 Dmochowski, J.E., Langer, J., Raczynska, J. and Jantsch, W., Phys. Rev. B 38, 3276 (1988).Google Scholar
11 von Bardeleben, H.J., Bourgoin, J.C., Basmaji, P. and Gibart, P., Phys. Rev. B 40, 5892 (1989).Google Scholar
12 von Bardeleben, H.J. and Bourgoin, J.C., Proc. of the Int. Conf. on Science and Tech. of Defect Control in Semiconductors, edited by Sumino, K., Yokohama (1989), to be published.Google Scholar
13 Chand, N., Handerson, T., Klein, J., Masselink, W.T. and Fischer, R., Phys. Rev. B 30, 4481 (1984).Google Scholar
14 Henning, J.C.M., Ansems, J.P.M. and Roksnoer, P.J., Semicond. Sci. & Tech. 3, 361 (1988).Google Scholar
15 Bourgoin, J.C., Feng, S.L. and von Bardeleben, H.J., Phys. Rev. B 40, 7663 (1989).Google Scholar
16 Baj, M. and Dreszer, P., in Defects in Semiconductors, edited by Ferenczi, G., Mat. Sci. Forum 38 (Trans Tech Publ., Switzerland, 1989), p. 101.Google Scholar
17 Baj, M. and Dreszer, P., Phys. Rev. B 39, 10470 (1989).Google Scholar
18 Kaminska, M., Skowronski, M., Lagowski, J., Parsey, J.M. and Gatos, H.C., Appl. Phys. Lett. 43, 302 (1983).Google Scholar
19 Chantre, A., Vincent, G. and Bois, D., Phys. Rev. B 23, 5335 (1981).Google Scholar
20 Kaminska, M., Skowronski, M. and Kuszko, W., Phys. Rev. Lett. 55, 204 (1965).Google Scholar
21 Aspnes, D.E., Phys. Rev. B 14, 5331 (1976).Google Scholar
22 Nolte, D.D., Walukiewicz, W. and Haller, E.E., Phys. Rev. B 30, 9374 (1987).Google Scholar
23 Dreszer, P. and Baj, M., Acta Phys. Polon. A 73, 219 (1988).Google Scholar
24 Zylbersztejn, A., Wallis, R.H. and Besson, J.M., Appl. Phys. Lett. 32, 765 (1978).Google Scholar
25 Bassani, F., Iadonisi, G. and Preziosi, B., Rep. Prog, in Phys. 37, 1099 (1974).Google Scholar