Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:29:50.462Z Has data issue: false hasContentIssue false

Micromagnetic Simulation of Thermal Effects in Magnetic Nanostructures

Published online by Cambridge University Press:  10 February 2011

Rok Dittrich
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Thomas Schrefl
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Vassilios Tsiantos
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Hermann Forster
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Dieter Suess
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Werner Scholz
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Josef Fidler
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Get access

Abstract

A path finding method and a stochastic time integration scheme for the simulation of thermally activated magnetization processes are introduced. The minimum energy path and the saddle points for the thermally induced transitions between the ground states of NiFe magnetic nano-elements are calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, N. and Arnett, P., Appl. Phys. Lett. 78, 1448 (2001).Google Scholar
2. Bertram, H. N., Safonov, V. L., Jin, Z., IEEE Trans. Magn. 38, 2514 (2002).Google Scholar
3. Zhu, J.-G., J. Appl. Phys. 91, 7273 (2002).Google Scholar
4. Rizzo, N. D., DeHerrera, M., Janesky, J., Engel, B., Slaughter, J. and Tehrani, S., Appl. Phys. Lett. 80, 2335 (2002).Google Scholar
5. Weller, D. and Moser, A., IEEE Trans. Magn. 35, 4423 (1999).Google Scholar
6. Néel, L., Ann. Geophys. 5, 99 (1949).Google Scholar
7. Brown, W. F. Jr, Phys. Rev. 130, 1677 (1963).Google Scholar
8. Braun, H.-B., J. Appl. Phys. 76, 6310 (1994).Google Scholar
9. Fukushima, H., Uesaka, Y., Nakatani, Y. and Hayashi, N., J. Magn. Magn. Mater. 242–245, 1002 (2002).Google Scholar
10. Coffey, W. T., Crothers, D. S. F., Dorman, J. L., Kalmykov, Yu. P., Kennedy, E. C. and Wernsdorfer, W., Phys. Rev. Lett. 80, 5655 (1998).Google Scholar
11. Garcia-Palacios, J. L. and Lazaro, F. J., Phys. Rev. B 58, 14937 (1998).Google Scholar
12. Zhang, K., Fredkin, D. R., J. Appl. Phys. 85, 5308 (1999).Google Scholar
13. Scholz, W., Schrefl, T. and Fidler, J., J. Magn. Magn. Mater. 233, 296 (2001).Google Scholar
14. Scholz, W., Schrefl, T. and Fidler, J., IEEE Trans. Magn. 36, 3189 (2000).Google Scholar
15. Berkov, D.V., J. Magn. Magn. Mater. 186, 199 (1998).Google Scholar
16. Weinan, E, Ren, W. and Vanden-Eijnden, E., Phys. Rev. B 66, 52301 (2002)Google Scholar
17. Henkelman, G., Jónsson, H., J. Chem. Phys. 113, 9978 (2000).Google Scholar
18. Dittrich, R., Schrefl, T., Suess, D., Scholz, W., Forster, H. and Fidler, J., J. Magn. Magn. Mater. 250, 12 (2002).Google Scholar
19. Brown, W. F. Jr,, Micromagnetism, (Interscience, New York, 1963).Google Scholar
20. Fredkin, D.R., Koehler, T.R., IEEE Trans. Magn. 26, 415 (1990).Google Scholar
21. Drummond, P. D. and Mortimer, I. K., J. Comput. Phys. 93, 144 (1991).Google Scholar
22. Cohen, S. D. and Hindmarsh, A. C., Computers in Physics 10, 138 (1996).Google Scholar