Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:20:22.705Z Has data issue: false hasContentIssue false

Microstructural Analysis of Electromigration-Induced Voids and Hillocks

Published online by Cambridge University Press:  15 February 2011

John E. Sanchez Jr.
Affiliation:
Max-Planck Institute Für Metallforschung, Seesstrasse 92, D-7000 Stuttgart 1, Germany
J. W. Morris Jr.
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, and Center For Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Interconnect reliability is of continuing concern in modem VLSI circuits. This work presents analyses of the microstructural detail in electromigration-induced damage in Al and Al-Cu unpassivated interconnects. Such failure analysis is crucial for the characterization of the fundamental processes responsible for failure. Results, via TEM, SEM and focussed-ion beam techniques, suggest possible second phase precipitate-void growth interactions, show slit-like open circuit failures in narrow interconnects, and illustrate the microstructures of hillocks and whiskers formed during accelerated electromigration testing. These results are discussed in terms of existing models for electromigration failure processes and lifetimes. The results are further intended to suggest mechanisms for future modelling and to direct the design of more reliable interconnect material systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vaidya, S., Sheng, T.T., Sinha, A.K., Appl. Phys. Lett., 36 (6), 464466 (1980).Google Scholar
2. Cho, J., Thompson, C.V., Appl. Phys. Lett., 54 (25), 25772579 (1989).Google Scholar
3. Kinsbron, E., Appl. Phys. Lett., 36 (12), 968970 (1980).Google Scholar
4. Blech, I.A., Meieran, E.S., Appl. Phys. Lett., 11 (#8), 263266 (1967).Google Scholar
5. Blech, I.A., Meieran, E.S., J. Appl. Phys., 40 (2), 485491 (1969).Google Scholar
6. D'Heurle, F.M., Met. Transactions, 2, 683689 (1971).Google Scholar
7. Yue, J.T., Funsten, W.P., Taylor, R.Y., proceedings International Reliabilty Physics Symposium (IEEE, 1985), vol. IRPS–85, pp. 126–137.Google Scholar
8. Owada, N., et al, proceedings VLSI Multilevel Interconnection Conference (IEEE, Santa Clara, CA, 1985), vol. VMIC-85, pp. 173–179.Google Scholar
9. Kaneko, H., et al, proceedings International Reliability Physics Symposium, (IEEE, New Orleans, 1990), vol. IRPS–89, pp. 194199.Google Scholar
10. Sanchez, J.E. Jr., McKnelly, L.T., Morris, J.W. Jr., J. Electr. Materials, 19, 1213(1990).Google Scholar
11. McKnelly, L.T., et al, presented 1990 Annual TMS Meeeting, Feb. 1990, Anaheim, CA.Google Scholar
12. Sanchez, J.E. Jr., Lloyd, J.R., Morris, J.W. Jr., J. of Metals, 42 (9), 4145 (1990).Google Scholar
13. Thompson, C.V., Cho, J., IEEE Elect. Dev. Lett., 7 (12), 667668 (1986).Google Scholar
14. Nikawa, K., et al, proceedings International Reliability Physics Symposium (IEEE, Phoenix, AZ, 1989), vol. IRPS–89, pp. 4352.Google Scholar
15. Marche, P.H. La, Levi-Setti, R., Lam, K., IEEE Tr. Nucl. Sci., NS– 30, 1240 (1983).Google Scholar
16. Attardo, M.J., Rutledge, R., Jack, R.C., J. Appl. Phys., 42, 43434349 (1971).Google Scholar
17. Ross, C.A., et al, accepted for publication, J. Electr. Materials, 1990.Google Scholar
18. Balluffi, R.W., Met. Transactions A, 13A, 20692095 (1982).Google Scholar
19. Nix, W.D., Arzt, E., Met. Transactions A, accepted for publication, (1990).Google Scholar
20. Lloyd, J.R., Nakahara, S., J.Vac. Sci Tech., 14 (1), 655659 (1977).Google Scholar
21. Hasunurna, M., et al, proc. IEEE-IEDM Meeting (IEEE, Wash., DC,1989) p. 677.Google Scholar
22. Sanchez, J.E. Jr., McKnelly, L.T., Morris, J.W. Jr., submitted Applied Physics LettersGoogle Scholar
23. Sanchez, J.E. Jr., Morris, J.W. Jr., to be published.Google Scholar
24. Blech, I.A., Herring, C., Appl. Phys. Lett., 29 (1), 131133 (1976).Google Scholar
25. Ross, C.A., et al, J. Appl. Phys., 66 (6), 23492355 (1989).Google Scholar
26. Agarwala, B.N., Digiacomo, G., Joseph, R.R., Thin Solid Films, 34, 165169 (1976).Google Scholar
27. Sanchez, J.E. Jr., McKnelly, L.T., Morris, J.W. Jr., presented at “Phase Transformation Kinetics in Thin Films”, this meeting (Materials Research Society, Anaheim, CA, 1991).Google Scholar
28. Lloyd, J.R., Applied Physics Letters, 57 (11), 11671168 (1990).Google Scholar
29. Chaudhari, P., J.Vac. Sci. Tech., 9(1), 520522 (1972).Google Scholar
30. Bacconier, B., et al, J. Appl. Phys., 64 (11), 64836489 (1988).Google Scholar
31. Sanchez, J.E. Jr., proceedings Tungsten and Other Refractory Metals For VLSI Applications,, Broadbent, E., Editor, (Mat. Res. Soc., Palo Alto, CA, 1986), 395399.Google Scholar