Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T10:02:04.746Z Has data issue: false hasContentIssue false

Microstructure of Swift Heavyion Irradiated MgAl204 Spinel

Published online by Cambridge University Press:  15 February 2011

S.J. Zinkle
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376USA, zinklesj@orml.gov
Hj. Matzke
Affiliation:
EC, JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
V.A. Skuratov
Affiliation:
Joint Institute for Nuclear Research, Flerov Lab, 141980 Dubna, Russia
Get access

Abstract

Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl2O4) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1×1016/m2 (single track regime) to 1×1020/m2. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of ∼35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1×1019/m2. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clinard, F.W. Jr., Hurley, G.F., and Hobbs, L.W., J. Nucl. Mater. 108&109, 655 (1982).Google Scholar
2. Pells, G.P., J. Nucl. Mater. 155–157, 67 (1988).Google Scholar
3. Kinoshita, C., Fukumoto, K., Fukuda, K., Garner, F.A., and Hollenberg, G.W., J. Nucl. Mater. 219, 143 (1995).Google Scholar
4. Matzke, Hj., Nucl. Instr. Meth. B 116, 121 (1996).Google Scholar
5. Sickafus, K.E. Larson, A.C. Yu, N. et al. , J. Nucl. Mater. 219, 128 (1995).Google Scholar
6. Buckley, S.N. Shaibani, S.J., Philos. Mag. Lett. 55 (1), 15 (1987).Google Scholar
7. Satoh, Y. Kinoshita, C. and Nakai, K., J. Nucl. Mater. 179–181, 399 (1991).Google Scholar
8. Zinkle, S.J. in Microstructure Evolution During Irradiation, MRS Symposium Proceedings, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and Rubia, T. Diaz de la (Materials Research Society, Pittsburgh, 1997), Vol. 439, p. 667.Google Scholar
9. Zinkle, S.J., J. Nucl. Mater. 219, 113 (1995).Google Scholar
10. Yasuda, K. Kinoshita, C. Morisaki, R. and Abe, H., Philos. Mag. A 78 (3), 583 (1998).Google Scholar
11. Turos, A. Matzke, Hj., Drigo, A., Sambo, A., and Falcone, R., Nucl. Instr. Meth. B 113, 261 (1996).Google Scholar
12. Yu, N., Devanathan, R., Sickafus, K.E., and Nastasi, M., J. Mater. Res. 12 (7), 1766 (1997).Google Scholar
13. Zinkle, S.J. and Pells, G.P., J. Nucl. Mater. 253, 120 (1998).Google Scholar
14. Bordes, N., Wang, L.M., Ewing, R.C., and Sickafus, K.E., J. Mater. Res. 10 (4), 981 (1995).Google Scholar
15. Zinkle, S.J. and Snead, L.L., Nucl. Instr. Meth. B 116, 92 (1996).Google Scholar
16. Devanathan, R., Yu, N., Sickafus, K.E., and Nastasi, M., Nucl. Instr. Meth. B 127/128, 608 (1997).Google Scholar
17. Wang, S.X., Wang, L.M., Ewing, R.C., and Doremus, R.H., J. Non-Cryst. Solids 238, 198 (1998).Google Scholar
18. Toulemonde, M., Bouffard, S., and Studer, F., Nucl. Instr. Meth. B 91, 108 (1994).Google Scholar
19. Zinkle, S.J. and Skuratov, V.A., Nucl. Instr. Meth. B 141, 737 (1998).Google Scholar
20. Wiss, T. and Matzke, Hj., 19th Int. Conf. on Nuclear Tracks in Solids, to be publ. in Radiation Measurements, in press (1999).Google Scholar
21. Ziegler, J.F., Biersak, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
22. Chen, S.P., Yan, M., Gale, J.D. et al. , Philos. Mag. Lett. 73 (2), 51 (1996).Google Scholar
23. Canut, B., Benyagoub, A., Marest, G. et al. , Phys. Rev. B 51 (18), 12194 (1995).Google Scholar
24. Thevenard, P.A., Beranger, M., Canut, B., and Ramos, S.M.M., in Ion-Solid Interactiopis for Materials Modification and Processing, MRS Symposium Proceedings, edited by Poker, D.B. et al. (Materials Research Society, Pittsburgh, 1996), Vol. 396, p. 127.Google Scholar
25. Ramos, S.M.M., Bonardi, N., Canut, B., and Della-Negra, S., Phys. Rev. B 57 (1), 189 (1998).Google Scholar
26. Devanathan, R., Sickafus, K.E., Yu, N., and Nastasi, M., Philos. Mag. Lett. 72 (3), 155 (1995).Google Scholar
27. Chauvin, N., Konings, R.J.M., and Matzke, Hj., J. Nucl. Mater. in press (1999).Google Scholar