Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T06:36:00.205Z Has data issue: false hasContentIssue false

Microwave Activation of Exfoliation in Ion–cut Silicon Layer Transfer

Published online by Cambridge University Press:  01 February 2011

Douglas C. Thompson
Affiliation:
dcthompson@asu.edu, Arizona State University, School of Materials, 1711 S. Rural Road # ECG 303, Tempe, AZ, 85287-8706, United States, (480) 965-2861, (480) 965-8976
T. L. Alford
Affiliation:
alford@asu.edu, Arizona State University, School of Materials, Tempe, AZ, 85287-8706, United States
J. W. Mayer
Affiliation:
mayer@asu.edu, Arizona State University, School of Materials, Tempe, AZ, 85287-8706, United States
T. Hochbauer
Affiliation:
hoechbauer@lanl.gov, Los Alamos National Laboratory, Materials Science & Technology Division, Los Alamos, NM, 87544, United States
J. K. Lee
Affiliation:
jklee@lanl.gov, Los Alamos National Laboratory, Materials Science & Technology Division, Los Alamos, NM, 87544, United States
M. Nastasi
Affiliation:
nasty@lanl.gov, Los Alamos National Laboratory, Materials Science & Technology Division, Los Alamos, NM, 87544, United States
N. David Theodore
Affiliation:
David.Theodore@freescale.com, Freescale Semiconductor Inc, Wireless & Packaging Systems Lab., Tempe, AZ, 85284, United States
Get access

Abstract

Microwave heating is used to initiate the ion-cut process for transfer of coherent silicon-layers onto insulator substrates. Hydrogen and boron co-implanted silicon was bonded to an insulative substrate before processing inside a 2.45 GHz, 1300 W cavity applicator microwave system. Sample temperatures measured using a pyrometer were comparable to previous ion – cut studies. Selected samples were further annealed to repair any damage created in the ion implant process. Rutherford backscattering spectrometry and selective area electron diffraction patterns show high crystallinity in transferred layers. RUMP simulation of backscattering spectra and cross-sectional transmission electron microscopy demonstrate that thicknesses of the transferred layers are comparable to previous ion-cut exfoliation techniques. Surface quality as characterized by an atomic force microscope compares well with previous ion-cut studies. Hall measurements were used to characterize electrical properties of transferred layers. The mobility and carrier density of microwave activated ion – cut silicon on insulator processed samples compares well with previous annealing techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, F., Qiao, D., Cai, M., Yu, P. K. L., Lau, S. S., Fu, R. K. Y., Hung, L. S., Li, C. P., Chu, P. K., Chein, H. C., and Liou, Y., Journa of Vacuum Science Technology B 21, 21092113 (2003). R. Subasri, T. Matthews, O. M. Sreedharan, and V. S. Ragunathan, Solid-State Ionics 158, 199-204 (2003).Google Scholar
2. Roy, R., Agrawal, D., Cheng, J., and Gedevanishvili, S., Nature (London) 399, 668670 (1999).Google Scholar
3. Thompson, D. C., Kim, H. C., Alford, T. L., and Mayer, J. W., Applied Physics Letters 83, 39183920 (2003).Google Scholar
4. Doolittle, L. R., Nuclear Instruments & Methods in Physics Research, B 9, 344351 (1985).Google Scholar
5. Lee, J. K., Nastasi, M., Theodore, N. D., Smalley, A., Alford, T. L., Mayer, J. W., Cai, M., and Lau, S. S., Journal of Applied Physics 96, 280288 (2004).Google Scholar
6. Zeigler, J. F., IBM Research, Yorktown, NY, 10598.Google Scholar
7. Du, J., Ko, W. H., and Young, D. J., Sensors and Actuators A 112, 116121 (2004).Google Scholar
8. Cai, M., Qiao, D., Yu, L. S., Lau, S. S., Li, C. P., Hung, L. S., Haynes, T. E., Henttinen, K., Suni, l., Poon, V. M. C., Marek, T., and Mayer, J. W., Journal of Applied Physics 92, 33883392(2002).Google Scholar
9. Meng, B., Klein, B. D. B., Booske, J. H., Cooper, R. F.. Phys. Rev B 53, 12777 (1996).Google Scholar
10. Metaxas, A. C., Meredith, R. J., Industrial Microwave Heating, IEEE Power Engineering Series 4, (Peter Peregrinus Ltd, London, U. K. 1983).Google Scholar
11. Lee, J. K., Höchbauer, T., Averitt, R. D., and Nastasi, M.. Appl. Phys. Lett. 83 3042 (2003).Google Scholar
12. Weldon, M. K., Marsico, V. E., Chabal, Y. J., Agarwal, A., Eaglesham, D. J., Sapjeta, J., Brown, W. L., Jacobson, D. C., Caudano, Y., Christman, S. B., Chaban, E. E., J. Vac. Sci. Technol. B15, 1065 (1997).Google Scholar
13. Mayer, J. W. and Lau, S. S., Electronic Material Science: For Integrated Circuits in Si and GaAs (Macmillian, New York, 1990).Google Scholar
14. Freeman, S. A., Booske, J. H., and Cooper, R. F., Phys. Rev. Lett, 74, 2042 (1995).Google Scholar