Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T05:33:41.838Z Has data issue: false hasContentIssue false

The Migration Concept for Ionic Motion in Materials With Disordered Structures

Published online by Cambridge University Press:  11 February 2011

K. Funke
Affiliation:
University of Münster, Institute of Physical Chemistry and Sonderforschungsbereich 458, Schlossplatz 4, D – 48149 Münster, Germany, E-mail: K.Funke@uni-muenster.de and banhatt@uni-muenster.de
R. D. Banhatti
Affiliation:
University of Münster, Institute of Physical Chemistry and Sonderforschungsbereich 458, Schlossplatz 4, D – 48149 Münster, Germany, E-mail: K.Funke@uni-muenster.de and banhatt@uni-muenster.de
Get access

Abstract

The dynamics of the mobile ions in materials with disordered structures are a challengingly complicated many-particle process. In this paper, we consider characteristic frequency-dependent conductivities and permittivities of such materials and show that they can be well reproduced within the framework of the MIGRATION concept. The meaning of the acronym is MIsmatch Generated Relaxation for the Accommodation and Transport of IONs. In the MIGRATION concept, we attempt to grasp the essence of the ion dynamics in a simple set of rules which convey a physical picture of the most relevant elementary processes. The rules are expressed in terms of three coupled rate equations which then form the basis for deriving frequency-dependent model conductivities and permittivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Funke, K. and Cramer, C., Curr. Opin. Solid State Mat. Sci., 2, 483 (1997).Google Scholar
[2] Taylor, H.E., Trans. Faraday Soc., 52, 873 (1956).Google Scholar
[3] Isard, J.O., J. Non-Cryst. Solids, 4, 357 (1970).Google Scholar
[4] Dyre, J.R., J. Appl. Phys., 64, 2456 (1988).Google Scholar
[5] Kahnt, H., Ber. Bunsen-Ges. Phys. Chem., 95, 1021 (1991).Google Scholar
[6] Roling, B., Funke, K., Happe, A. and Ingram, M.D., Phys. Rev. Lett., 78, 2160 (1997).Google Scholar
[7] Sidebottom, D.L., Phys. Rev. Lett., 82, 3653 (1999).Google Scholar
[8] Roling, B., Martiny, C. and Funke, K., J. Non-Cryst. Solids, 249, 201 (1999)Google Scholar
[9] Roling, B., Martiny, C. and Brueckner, S., Phys. Rev. B, 63, 214203 (2000).Google Scholar
[10] Funke, K., Brueckner, S., Cramer, C. and Wilmer, D., J. Non-Cryst. Solids, 307–310, 921 (2002).Google Scholar
[11] Cramer, C., Brueckner, S., Gao, Y., Funke, K., Belin, R., Taillades, G. and Pradel, A., J. Non-Cryst. Solids, 307–310, 905 (2002).Google Scholar
[12] Cutroni, M., Mandanici, A., Mustarelli, P., Tomasi, C. and Federico, M., J. Non-Cryst. Solids, 307–310, 963 (2002).Google Scholar
[13] Martiny, C., Diplom Thesis, University of Muenster (1998).Google Scholar
[14] Funke, K., Banhatti, R.D., Brueckner, S., Cramer, C., Krieger, C., Mandanici, A., Martiny, C. and Ross, I., Phys. Chem. Chem. Phys., 4, 3155 (2002).Google Scholar
[15] Funke, K., Prog. Solid State Chem., 22, 111 (1993).Google Scholar
[16] Kubo, R., J.Phys. Soc. of Japan, 12, 570 (1957).Google Scholar
[17] Thomas, M.P. and Peterson, N.L., Solid State Ionics, 14, 297 (1984).Google Scholar
[18] Cramer, C., Brueckner, S., Gao, Y. and Funke, K., Phys. Chem. Chem. Phys., 4, 3214 (2002).Google Scholar
[19] Summerfeld, S., Philos. Mag. B, 52, 9 (1985).Google Scholar