Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T15:46:08.726Z Has data issue: false hasContentIssue false

Minority Carrier Diffusion Length Improvement in Czochralski Silicon by Aluminum Gettering

Published online by Cambridge University Press:  26 February 2011

Subhash M. Joshi
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708–0300
Ylrich M. GÖsele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708–0300 Max-Planck-Institute of Microstructure Physics, Weinberg 2, D–06120 Halle/Saale, Germany
Teh Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708–0300
Get access

Abstract

Gettering is widely used for fabricating integrated circuits using Si substrates, and has great potential for solar cell fabrications as well. Recently available solar cell efficiency studies have shown the benefits of the wafer backside Al, attributable to effects of gettering, a wafer backside field, and passivation of grain boundaries and dislocations. In this paper, we report experimental results which showed unambiguously that Czochralski Si wafer bulk minority carrier diffusion lengths can be significantly improved due to gettering of impurities by wafer backside Al, which also provided a protection from environmental contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tan, T. Y., Gardner, E. E., and Tice, W. K., Appl. Phys. Lett. 30, 175 (1977).Google Scholar
2. Semiconductor Silicon 1994. edited by Huff, H. R., Bergholz, W., and Sumino, K. (The Electrochem. Soc., Pennington, NJ, 1994).Google Scholar
3. Schröter, W., Seibt, M., Gilles, D., Ch. 11 of Electronic Structure and Properties of Semiconductors, edited by Schröter, W., Vol. 4 of Materials Science and Technology: A Comprehensive Treatment, edited by R. W. Cahn, P. Haasen, and E. J. Kramer(VCH Publishers, New York, 1991), p. 576.Google Scholar
4. Sveinbjörnsson, E. Ö., Engstrom, O. and Södervall, U., J. Appl. Phys. 73, 7311 (1993).Google Scholar
5. compiled from Alloy Phase Diagrams. Vol. 3 of ASM Handbook, edited by Baker, H. (ASM International, Metals Park, OH.1992)Google Scholar
6. Thompson, R. D. and Tu, K. N., Appl. Phys. Lett. 41, 440 (1982).Google Scholar
7. Bruton, T. M., Mitchell, A., Teale, L., and Knobloch, J., Proc. 10th European Photovoltaic Solar Energy Conference (Kluwer Academic Publishers, Netherlands, 1991) pp. 667669.Google Scholar
8. Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P., Appl. Phys. Lett. 63, 1249 (1993).Google Scholar
9. Sundaresan, R., Burk, D. E., and Fossum, J. G., J. Appl. Phys. 55, 1162 (1984).Google Scholar
10. Janssens, R., Mertens, R., and Van Overstraeten, R., Conference Record of the 15th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1981) pp. 13221325.Google Scholar
11. Narayanan, U.S., Wenham, S. R., and Green, M. A., IEEE Trans. Electron Dev. ED–37, 382 (1990).Google Scholar
12. Rohatgi, A., Sana, P., and Salami, J., Proc. 11th European Photovoltaic Solar Energy Conference (Harwood Academic Publishers, Switzerland, 1992) pp. 159163.Google Scholar
13. Mandelkorn, J. and Lamneck, J. Jr., J. Appl. Phys. 44, 4785 (1973).Google Scholar
14. Hwang, J. C. M., Ho, P. S., Lewis, J. E., and Campbell, D., J. Appl. Phys. 51, 1576 (1980).Google Scholar
15. Lehmann, V. and Föll, H., J. Electrochem. Soc. 135, 2831 (1988).Google Scholar
16. Sumitomo, Y., Yasui, T., Nakatsuka, H., Ohashi, T., Tsutsumi, H., and Muraoka, H., Electrochem. Soc. Spring Mtg., Abstract No. 25 (1972).Google Scholar
17. Arita, Y. and Sunohara, T., J. Electrochem. Soc. 124, 285 (1977).Google Scholar