Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-04T15:47:42.626Z Has data issue: false hasContentIssue false

Mobility-Lifetime Products in a-Si:H and the Dangling Bond Recombination Model

Published online by Cambridge University Press:  21 February 2011

E. Morgado*
Affiliation:
Technical University of Lisbon, Instituto Supeno Técnico, Centro de Física Molecular das Universidades de Lisboa, Av. Rovisco Pais, Complexo I - 1ST, 1000 Lisboa, Portugal
Get access

Abstract

Fermi level and light intensity dependences of electron and hole lifetimes have been calculated using a recombination model which considers positively correlated dangling bonds as the only localized states in the gap. The model equations have been solved numerically taking into account the non-equilibrium statistics of correlated electrons and the Fermi level dependence of the defect density. The results are in agreement with the anticorrelated behavior of the majority' and minority carrier μτ products observed in a-Si:H. The majority carrier lifetime is found to be more sensitive to the photogeneration rate than the minority carrier lifetime. The position of the Fermi level with respect to the energies of the D° and D- centers in the gap is a determinant factor of the (°τ)e/(μτ)h ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Spear, W.E., Steemer, H.L., Le Comber, P.G. and Gibson, R.A., Phil. Mag. B50 (1984) L33 CrossRefGoogle Scholar
[2] Yang, L., Catalano, A., Arya, R.R. and Balberg, I., Appl. Phys. Lett. 57 (1990) 908 CrossRefGoogle Scholar
[3] Kocka, J., Nebel, C.E. and Abel, C.D., Phil. Mag. B63 (1991) 221 CrossRefGoogle Scholar
[4] Kusian, W., Pfeiderer, H. and Gunzel, E., ICAS 14 (Garmisch-Partenkirchen) 1991 Google Scholar
[5] Bauer, G.H., Schumm, G. and Abel, C.D., Proc. 6th PVSEC (ed. Das, B.K. and Singh, S.N., 1992) p. 443 Google Scholar
[6] Morgado, E., Proc. 6th PVSEC (ed. Das, B.K. and Singh, S.N., 1992) p. 1107 Google Scholar
[7] Morgado, E., MRS Symp. Proc. Vol. 192 (1990) 763 CrossRefGoogle Scholar
[8] Morgado, E., Phil. Mag. B63 (1991) 529 CrossRefGoogle Scholar
[9] Street, R.A. and Mott, N.F., Phys. Rev. Lett. 35 (1975) 1293 CrossRefGoogle Scholar
[10] Street, R.A. and Bigielsen, D.K., J. Non-Cryst. Solids 35/36 (1980) 651 CrossRefGoogle Scholar
[11] Sah, C.T. and Shockley, W., Phys. Rev. 109 (1958) 1103 CrossRefGoogle Scholar
[12] Okamoto, H. and Hamakawa, Y., Solid State Commun. 24 (1977) 23 CrossRefGoogle Scholar
[13] Vaillant, F. and Jousse, D., Phys. Rev. B34 (1986) 4088 CrossRefGoogle Scholar
[14] Ritter, D., Weiser, K. and Zeldov, E., J. Appl. Phys. 62 (1987) 4563 CrossRefGoogle Scholar
[15] Pierz, K., Fuhs, W. and Mell, H., Phil. Mag. B63 (1991) 123 CrossRefGoogle Scholar
[16] Anderson, D.A. and Spear, W.E., Phil. Mag. 36 (1977) 695 CrossRefGoogle Scholar
[17] Jackson, W.B. and Nemanich, R.J., Phys. Rev. B27 (1983) 4861 CrossRefGoogle Scholar