Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T17:43:20.508Z Has data issue: false hasContentIssue false

MOCVD Growth of Gan on Silicon and Related Surfaces

Published online by Cambridge University Press:  10 February 2011

J. Han
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601, jhan@sandia.gov
J. G. Fleming
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601, jhan@sandia.gov
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601, jhan@sandia.gov
Get access

Abstract

The growth of GaN on silicon (Si) substrates by MOCVD is reported in this paper. The use of a high-temperature AIN buffer layer appears to be necessary to establish an initial template morphology for the subsequent growth of GaN. Nucleation modes of GaN on SiO2, (100) Si, and (111) Si are compared; it is shown that the spatial coherency among the nuclei is most preserved when the growth occurred on the hexagonal Si (111) surface. To circumvent the problem associated with cracking due to a thermal expansion mismatch, we also investigate the possibility of using a silicon-on-insulator (SOI) scheme.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, Springer-Verlag, Berlin Heidelberg (1997).Google Scholar
2. Lester, D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
3. Takeuchi, Watanabe, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Akasaki, I., J. Cryst. Growth 128, 391 (1993).Google Scholar
4. Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Cryst. Growth 115, 634 (1991).Google Scholar
5. Yang, W., Sun, C. J., Chen, Q., Anwar, M. Z., Khan, M. S., Nikishin, S. A., Seryogin, G. A., Osinski, A. V., Chernyak, L., Temkin, H., Hu, C., and Mahajan, S., Appl. Phys. Lett. 69, 3566 (1996).Google Scholar
6. Kobayashi, P., Kobayashi, J. T., Dapkus, P. D., Choi, W. -J., Bond, A. E., Zhang, X., and Rich, D. H., Appl. Phys. Lett. 71, 3569 (1997).Google Scholar
7. Yang, Guarin, F., Tao, I. W., Wang, W. I., and Iyer, S. S., J. Vac. Sci. Technol. B 13, 789 (1995).Google Scholar
8. Bruel, Nucl. Instrum. Methods Phys. Res. B 108, p3 13 (1996).Google Scholar
9. Jostsons, Kelly, A., Blake, R.G. and Napier, J.G., Phys. Stat. Sol. (a) 31, 771 (1975).Google Scholar
10. Ning, J., Chien, F. R., Pirouz, P., Yang, J. W., and Khan, M. Asif, J. Mater. Res. 11, 580 (1996); W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, Appl. Phys. Lett. 66, 1252 (1995); X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 80, 3228 (1996).Google Scholar
11. Kobayashi, T., Kobayashi, N. P., Dapkus, P. D., J. Electro. Mater. 26, 1114 (1997).Google Scholar