Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T02:26:14.540Z Has data issue: false hasContentIssue false

Model Systems for Liquid Crystal Based Dispersed Heterogeneous Materials

Published online by Cambridge University Press:  10 February 2011

F. M. Aliev
Affiliation:
Department of Physics -and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
G. P. Sinha
Affiliation:
Department of Physics -and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Get access

Abstract

Porous matrices with determined pore size, volume fraction and structure can be used as model systems to understand physical properties of dispersed liquid crystals (LC) - material important for different applications. Using photon correlation spectroscopy and dielectric spectroscopy we investigated dynamic properties of nematic liquid crystal dispersed in porous matrices with randomly oriented, interconnected pores (porous glasses with average pore sizes of 100 Å and 1000 Å) and parallel cylindrical pores (Anopore membranes with pore diameters of 200 Å and 2000 Å). Since the structural characteristics of these matrices are nearly independent of the temperature, all observable effects due to temperature changes can be attributed to the change in the physical properties of the second component (bC). The spatial confinement and a highly developed interface in porous matrices have a strong influence on the optical and dielectric properties of confined LC which is resulted in: appearance of at least two new dielectrically active modes, absent in the bulk and existence of slow glass-like relaxational process detected in both dielectric and photon correlation experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doane, J.W.in Liquid Crystals: Applications and Uses, edited by Bahadar, B. (World Scientific, Singapore, 1990), Chap. 14.Google Scholar
2. Drzaic, P.S., Liquid Crystal Dispersions, (World Scientific, Singapore, 1995).Google Scholar
3. Golemme, A., Zumer, S., Allender, D.W., and Doane, J.W., Phys.Rev.Lett., 61, 2937, (1988).Google Scholar
4. Armitage, D., Price, F.P., Chem.Phys.Lett., 44, 305 (1976), MCLC, 44, 33, (1978).Google Scholar
5. Aliev, F.M. and Breganov, M.N., Sov.Phys. J. Experim. Theoret. Phys., 68, 70, (1989).Google Scholar
6. Bellini, T., Clark, N.A., Muzny, C.D., Wu, L., Garland, C.W., Schaefer, D.W., and Oliver, B.J., Phys.Rev. Lett., 69, 788, 1992.Google Scholar
7. Wu, X-I., Goldburg, W.I., Liu, M.X., and Xue, J.Z, Phys. Rev. Lett., 69, 470, (1992).Google Scholar
8. Iannacchione, G.S., Crawford, G.P., Zumer, S., Doane, J.W., and Finotello, D., Phys. Rev. Lett., 71, 2595, (1993).Google Scholar
9. Tripathi, S., Rosenblatt, C., and Aliev, F.M., Phys. Rev. Lett., 72, 2725, (1994).Google Scholar
10. Bellini, T., Clark, N.A., and Schaefer, D.W., Phys. Rev. Lett., 74, 2740, (1995)Google Scholar
11. Zidansek, A., Kralj, S., Lahajnar, G., and Blinc, R., Phys. Rev. E51, 3332, (1995).Google Scholar
12. Zhang, Z. and Chakrabarti, A., Phys.Rev., E52, 4991, (1995).Google Scholar
13. Aliev, F.M. and Nadtotchi, V.V.: in Disordered Materials and Interfaces, edited by Cummins, H.Z., Durian, D.J., Johnson, D.L., and Stanley, H.E., (Mater. Res. Soc. Proc., 407, Pittsburgh, PA, 1996), pp. 125130.Google Scholar
14. Crawford, G.P., , D.K.Yang, Zumer, S., Finotello, D., and Doane, J.W., Phys. Rev., A43, 2943, (1991)Google Scholar
15. Crawford, G.P., Allender, D.W., and Doane, J.W., Phys. Rev., A45, 8693 (1992).Google Scholar
16. Crawford, G.P., Ondris-Crawford, R., Zumer, S., and Doane, J.W., Phys.Rev.Lett.,70, 1838, (1993).Google Scholar
17. Ondris-Crawford, R.J., Crawford, G.P., Doane, J.W., and Zumer, S., Phys.Rev., E48, 1998, (1993).Google Scholar
18. Vrbancic, N., Vilfan, M., Blinc, R., Dolinsek, J., Crawford, G.P., and Doane, J.W., J. Chem. Phys., 98, 3540, (1993).Google Scholar
19. Iannacchione, G.S. and Finotello, D., Phys. Rev. E50, 4780, (1994).Google Scholar
20. Crandall, K.A., Rosenblatt, C., and Aliev, F.M., Phys.Rev., E53, 636, (1996).Google Scholar
21. Aliev, F.M., in Access in Nanoporous Materials, edited by Pinnavaia, T.J. and Thorpe, M.F., (Plenum Press, New York, 1995), pp. 335354.Google Scholar
22. Finotello, D. and Iannacchione, J., Int.Journ. Mod.Phys., B9, 109, 1995.Google Scholar
23. Crawford, G.P. and Zumer, S., Int.Journ. Mod.Phys., B9, 331, 1995.Google Scholar
24. Williams, G., J. Non-Cryst. Solids, 131–133, 1 (1991).Google Scholar
25. Cummins, P.G., Danmur, D.A., and Laidler, D.A., MCLC, 30, 109, (1975).Google Scholar
26. Scaife, B.K.P., Principles of Dielectrics, Oxford: Clarendon Press (1989).Google Scholar
27. Jeu, W.H. de, Physical Properties of Liquid Crystalline Materials, (Gordon and Breach, NY, London, Paris, 1980).Google Scholar