Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-05T07:21:43.161Z Has data issue: false hasContentIssue false

Modeling of Microstructure Development in Nanoscale Layered Systems

Published online by Cambridge University Press:  10 February 2011

W. Pompe
Affiliation:
Institute of Materials Science, University of Technology Dresden, 01062 Dresden, Germany, pompe@tmfs.mpgfk.tu-dresden.de
A. Ullrich
Affiliation:
Institute of Materials Science, University of Technology Dresden, 01062 Dresden, Germany, pompe@tmfs.mpgfk.tu-dresden.de
M. Bobeth
Affiliation:
Institute of Materials Science, University of Technology Dresden, 01062 Dresden, Germany, pompe@tmfs.mpgfk.tu-dresden.de
Get access

Abstract

The composition evolution in nanoscale layered systems during annealing is considered within the framework of the Cahn-Hilliard theory. Starting from as-deposited multilayers with morphologically rough and chemically diffuse coherent interfaces, the sharpening of concentration profiles and the flattening of interphase boundaries have been simulated. Grain boundary grooving within multilayers was supposed to initiate break-throughs in individual layers and the subsequent morphological development has been analyzed. The simulations reveal a deterioration of the layered structure by the fusion of individual layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parkin, S. S. P., Li, Z. G., Smith, D. J., Appl. Phys. Lett. 58, 2710 (1991).Google Scholar
2. Parker, M. A., Hylton, T. L., Coffey, K. R., Howard, J. K., J. Appl. Phys. 75, 6382 (1994).Google Scholar
3. Farrow, R. F. C., Parkin, S. S. P., Marks, R. F., Appl. Phys. Lett. 69, 1963 (1996).Google Scholar
4. Christides, C., Logothetidis, S., Gioti, M., Stergioudis, S., Stavroyiannis, S., Niarchos, D., J. Appl. Phys. 83, 7757 (1998).Google Scholar
5. Kharlamov, V., Bobeth, M., Dietsch, R., Gorbunov, A., Krawietz, R., Mai, H., Pompe, W., Sewing, A., , Yu. Trushin, phys. stat. sol. (a) 166, 91 (1998).Google Scholar
6. Larson, D. J., Petford-Long, A. K., Cerezo, A., Smith, G. D. W., Foord, D. T., Anthony, T. C., Appl. Phys. Lett. 73, 1125 (1998).Google Scholar
7. Cahn, J. W., Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).Google Scholar
8. Spaepen, F., Mat. Res. Soc. Symp. Proc. 37, 295 (1985).Google Scholar
9. Novick-Cohen, A., Segel, L. A., Physica 10D, 277 (1984).Google Scholar
10. Hentschel, M., Bobeth, M., Diener, G., Pompe, W., Thin Solid Films, 340, 1 (1999).Google Scholar
11. Langer, J.S., Annals Phys 65, 53 (1971).Google Scholar
12. Bobeth, M., Hentschel, M., Diener, G., Pompe, W., Ullrich, A., Mater. Sci. Forum 294–296, 613 (1999).Google Scholar
13. Srolovitz, D. J., Goldiner, M. G., J. Met. 3, 31 (1995).Google Scholar