Skip to main content

Modeling of Undercooling, Nucleation, and Multiple Phase Front Formation in Pulsed-Laser-Melted Amorphous Silicon*

  • R. F. Wood (a1), G. A. Geist (a2), A. D. Solomon (a2), D. H. Lowndes (a1) and G. E. Jellison (a1)...

Recently available experimental data indicate that the solidification of undercooled molten silicon prepared by pulsed laser melting of amorphous silicon is a complex process. Time-resolved reflectivity and electrical conductivity measurements provide information about near-surface melting and suggest the presence of buried molten layers. Transmission electron micrographs show the formation of both fine- and large-grained polycrystalline regions if the melt front does not penetrate through the amorphous layer. We have carried out extensive calculations using a newly developed computer program based on an enthalpy formulation of the heat conduction problem. The program provides the framework for a consistent treatment of the simultaneous formation of multiple states and phase-front propagation by allowing material in each finite-difference cell to melt, undercool, nucleate, and solidify under prescribed conditions. Calculations indicate possibilities for a wide variety of solidification behavior. The new model and selected results of calculations are discussed here and comparisons with recent experimental data are made.

Hide All

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

Hide All
1. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).
2. Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 13, 141 (1983).
3. Thompson, M. O., Galvin, G. J., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).
4. See, e.g., Wood, R. F. and Giles, G. E., Phys. Rev. B23, 2923 (1981).
5. Lowndes, D. H., Wood, R. F., and Narayan, J., Phys. Rev. Lett. 52, 561 (1984).
6. Wood, R. F., Lowndes, D. H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).
7. Lowndes, D. H., Wood, R. F., White, C. W., and Narayan, J., Mat. Res. Soc. Symp. Proc. 23, 99 (1984).
8. Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).
9. Webber, H. C., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 43, 669 (1983).
10. Goldsmid, H. J., Kaila, M. M., and Paul, G. I., Phys. Stat. Sol. (a) 76, K31 (1983).
11. See, for example, Carslaw, H. S. and Jaeger, J. C., "Conduction of Heat in Solids," 2nd ed. (The Clarendon Press, Oxford, 1959).
12. Lowndes, D. H., Jellison, G. E. Jr., Wood, R. F., Pennycook, S. J., and Carpenter, R. W., these Proceedings.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed