Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-23T07:13:36.461Z Has data issue: false hasContentIssue false

Modeling of Undercooling, Nucleation, and Multiple Phase FrontFormation in Pulsed-Laser-Melted Amorphous Silicon*

Published online by Cambridge University Press:  25 February 2011

R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
G. A. Geist
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
A. D. Solomon
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
Get access

Abstract

Recently available experimental data indicate that the solidification ofundercooled molten silicon prepared by pulsed laser melting of amorphoussilicon is a complex process. Time-resolved reflectivity and electricalconductivity measurements provide information about near-surface melting andsuggest the presence of buried molten layers. Transmission electronmicrographs show the formation of both fine- and large-grainedpolycrystalline regions if the melt front does not penetrate through theamorphous layer. We have carried out extensive calculations using a newlydeveloped computer program based on an enthalpy formulation of the heatconduction problem. The program provides the framework for a consistenttreatment of the simultaneous formation of multiple states and phase-frontpropagation by allowing material in each finite-difference cell to melt,undercool, nucleate, and solidify under prescribed conditions. Calculationsindicate possibilities for a wide variety of solidification behavior. Thenew model and selected results of calculations are discussed here andcomparisons with recent experimental data are made.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S.Department of Energy under contract DE-AC05-840R21400 with MartinMarietta Energy Systems, Inc.

References

REFERENCES

1. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
2. Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
3. Thompson, M. O., Galvin, G. J., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
4. See, e.g., Wood, R. F. and Giles, G. E., Phys. Rev. B23, 2923 (1981).Google Scholar
5. Lowndes, D. H., Wood, R. F., and Narayan, J., Phys. Rev. Lett. 52, 561 (1984).Google Scholar
6. Wood, R. F., Lowndes, D. H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).Google Scholar
7. Lowndes, D. H., Wood, R. F., White, C. W., and Narayan, J., Mat. Res. Soc. Symp. Proc. 23, 99 (1984).Google Scholar
8. Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).Google Scholar
9. Webber, H. C., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 43, 669 (1983).Google Scholar
10. Goldsmid, H. J., Kaila, M. M., and Paul, G. I., Phys. Stat. Sol. (a) 76, K31 (1983).Google Scholar
11. See, for example, Carslaw, H. S. and Jaeger, J. C., "Conduction of Heat in Solids," 2nd ed. (The Clarendon Press, Oxford, 1959).Google Scholar
12. Lowndes, D. H., Jellison, G. E. Jr., Wood, R. F., Pennycook, S. J., and Carpenter, R. W., these Proceedings.Google Scholar