Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T11:56:10.240Z Has data issue: false hasContentIssue false

Molecular Approach to Mesoporous Metal Sulfides

Published online by Cambridge University Press:  28 February 2011

Mark T. Anderson
Affiliation:
Ceramic Synthesis and Inorganic Chemistry Department, Sandia National Laboratories, Albuquerque, NM 87185-5800
Paula Newcomer
Affiliation:
Advanced Materials Physics Department, Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

We have synthesized metal-sulfide/surfactant nanocomposite materials by cooperative assembly of molecular precursors in an aqueous medium. The template-mediated synthetic approach is applicable to metal sulfides that exhibit aqueous thiometallate chemistry. The products are lamellar and have bilayers or interdigitated layers of surfactant molecules sandwiched between metal sulfide layers. The layers of anionic metal sulfide molecules are not completely condensed in the nanocomposites, which results in a negative charge on the metal sulfide layers. The materials are stable at room temperature in water, methanol, 1 M HCl, 30 wt% NH3, and 1 M NaOH. The materials do not dissolve at 80 °C in water and are stable to at least 180 0C in air. The nanocomposites exhibit ion exchange of smaller surfactants, alkali-metal ions, and divalent metal ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Everett, D. H., in IUPAC Manual of Symbols and Terminology, Pure AppI. Chem. 31, 578 (1972).Google Scholar
2. see for example: Breck, D. W., Zeolite Molecular Sieves, (Wiley, New York, 1974); or A. Dyer, An Introduction to Zeolite Molecular Sieves, (Wiley, New York, 1988).Google Scholar
3. Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M., Flanigen, E. M., Zeolites: Facts, Figures. Future, edited by Jacobs, P. A. and van Santen, R. A. (Elsevier Science, The Netherlands, 1989), pp. 375387.Google Scholar
4. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature, 359, 710712 (1992).Google Scholar
5. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., J. Am Chem. Soc., 114, 1083410843 (1992).Google Scholar
6. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F., and Stucky, G. D., Nature, 368, 317323 (1994).Google Scholar
7. see for example; Whittingham, S. and Jacobson, A. J., Intercalation Chemistry, (Academic Press, New York, 1982).Google Scholar
8. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schuth, F., and Stucky, G. D., Chem. Mater., 6(8), 1176 (1994).Google Scholar
9. Ozin, G. et al. , Supramolecular Chem., (Proceedings of the Molecular Recognition Conference, Ottawa, May 1994), in press.Google Scholar
10. Shannon, R. D., Acta Cryst., A32, 751767 (1976).Google Scholar
11. see for example; Wells, A. F., Sturctural Inorganic Chemistry, (Oxford, 1984), Chapter 17.Google Scholar