Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-10-04T20:21:21.563Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of the Trajectory of a RecoilNucleus in a Simplified Nuclear Glass

Published online by Cambridge University Press:  03 September 2012

J. M. Delaye
Affiliation:
Commissariat à l'Energie Atomique (CEA) Centre d Etudes de Saclay, F-91191 Gif-sur-Yvette Cedex, France
D. Ghaleb
Affiliation:
Commissariat à l Energie Atomique (CEA) Centre d Etudes de la Vallée du Rhône, BP 171, F-30207 Bagnols-sur-Cèze Cedex, France
Get access

Abstract

In a simplified (SiO2, B2O3,Na2O, Al2O3, ZrO2) glass,corresponding to the basic matrix for the French nuclear waste containmentglass, the authors developed a molecular dynamics simulation of the atomdisplacement cascades resulting from a disintegration of the actinides.After simulating the secondary cascades resulting from the first atomsdisplaced by a collision with a recoil nucleus, an actinide (U) was added tothe model and the cascade produced by accelerating this type of atom wasexplicitly investigated, notably to observe the morphological evolution ofthe cascades and the resulting changes in the glass structure.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Weber, W.J., Nucl. Instr. & Meth. in Phys. Rev. B32, p. 471 (1988).Google Scholar
2. Delaye, J.M., Ghaleb, D., J. Non-Cryst. Sol, 195, p. 239 (1996).Google Scholar
3. Delaye, J.M., Ghaleb, D., Mat. Sc. & Ing. B37, p. 232 (1996).Google Scholar
4. Delaye, J.M., Ghaleb, D., Proc. of 3rd International Conference on Computer Simulation of Radiation Effects in Solids COSIRES'96, Guildford U.K., 2226 July 1996 (to be published).Google Scholar
5. Lindan, P.J.D., Gillan, M.J., J. Phys. Condens. Mat., 3, p. 3929 (1991).Google Scholar
6. Delaye, J.M., Ghaleb, D., J. Nucl. Mat. (in press).Google Scholar
7. Doan, N.V., Rossi, F., Sol. St. Phen., 30&31, 75 (1993).Google Scholar
8. Merkle, K.L., in Radiation Damages in Metals, edited by Petersen, M.L., Harkners, S.D., ASM, 1975,p. 5894.Google Scholar
9. Jäger, W., J. Microsc. Spectrosc. Electron., 6, p. 437, (1981).Google Scholar
10. Robinson, M.T., J. Nucl. Mat., 216, p.l (1994).Google Scholar