Skip to main content
×
×
Home

Molecular Dynamics Simulations of Steps at Crystal Surfaces.

  • G. H. Gilmer (a1) and A. F. Bakker
Abstract
ABSTRACT

The growth of semiconductor crystals by molecular beam epitaxy often involves the motion of distinct steps, which are the boundaries of incomplete atomic layers. We review some of the crystal growth mechanisms based on step generation and motion. Ising models have been widely used to study equilibrium faceting and crystal growth. We discuss more general models of steps which are based on molecular dynamics calculations of atomic motion and empirical interatomic potentials. These models include the possibility of surface and step reconstructions, and here we discuss their influence on the step energy and motion. We find that certain types of steps have a structure with drastically reduced energy compared to unreconstructed steps. We have also examined the effect of stress resulting from misfit in epitaxial systems. We find that 1% misfit can completely change the nature of a step, since its excess energy may change sign from negative to positive, or vice versa. Simulations of molecular beam epitaxy give direct information on the conditions under which step growth mechanisms play a role.

Copyright
References
Hide All
(1) Wierenga P. E., Kubby J. A. and Griffith J. E., Phys. Rev. Lett. 59, 2169 (1987)
(2) Lagally M. G., Mo Y.-W., Kariotis R., Swartzentruber B. S. and Webb M. B., in: “Kinetics of Growth and Ordering at Surfaces”, Lagally M. G., ed., (Plenum, New York, 1990), p. 145.
(3) Hanbucken M., Futamoto M. and Venables J. A., Surface Sci. 147, 433 (1984).
(4) Tsuchiya M., Gaines J. M., Yan R. H., Simes R. J., Holtz P. O., Coldren L. A. and Petroff P. M., Phys. Rev. Lett. 62, 466 (1989).
(5) Chernov A. A., in: “Modem Crystallography III”, (Springer, Berlin, 1984).
(6) Stillinger F. H. and Weber T., Phys. Rev. B 31, 5262 (1985).
(7) Hockney R. W. and Eastwood J. W., in: “Computer Simulation using Particles”, (McGraw-Hill, New York, 1981).
(8) Tersoff J., Phys. Rev. Lett. 56, 632 (1986),
and Tersoff J., Phys. Rev. B 37, 6991 (1988).
(9) Schneider M., Schuller I. K. and Rahman A., Phys. Rev. B 36, 1340 (1987).
(10) Biswas R., Grest G. S. and Soukoulis C. M., Phys. Rev. B 38, 8154 (1988).
(11) Srivastava D., Garrison B. J. and Brenner D. W., Phys. Rev. Lett. 63, 302 (1989).
(12) Gilmer G. H., Grabow M. H. and Bakker A. F., Materials Science and Engineering, B6, 101 (1990).
(13) Bakker A. F., Gilmer G. H., Grabow M. H. and Thompson K., J. Comp. Phys. 90, 313 (1990).
(14) Poon T. W., Yip S., Ho P. S., Abraham F. F., Phys. Rev. Lett. 65, 2161 (1990).
(15) Alerhand O. L., Vanderbilt D., Meade R. D., and Joannopoulos J. D., Phys. Rev. Lett. 61, 1973 (1988).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 54 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.