Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T18:15:37.876Z Has data issue: false hasContentIssue false

N- and P-Type Doping of ZnSe Using Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

P. A. Fisher
Affiliation:
Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139
E. Ho
Affiliation:
Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139
J. L. House
Affiliation:
Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139
G. S. Petrich
Affiliation:
Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139
L. A. Kolodziejski
Affiliation:
Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139
M. S. Brandt
Affiliation:
Xerox Palo Alto Research Center, Palo Alto CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto CA 94304
Get access

Abstract

High quality ZnSe:Cl has been grown on GaAs by gas source molecular beam epitaxy (GSMBE); elemental Zn and H2Se are used as source materials, with ZnCl2 as a dopant source for donors. Atomic Cl concentrations ([Cl]) approaching 1020 cm−3 have been incorporated into the lattice as indicated by secondary ion mass spectrometry (SIMS). At incorporation levels greater than 1020 cm−3, an appreciable decrease in the growth rate has been observed. The sharp transition to a negligible growth rate is attributed to the occurrence of a surface chemical reaction originating from Cl and H which are present in the GSMBE environment. For [Cl] as high as 4 x 1018 cm−3, the films exhibited high crystalline quality, as indicated by photoluminescence originating from a single intense donor-bound excitonic transition. Hydrogenation of semiconductors can potentially result in the electrical passivation of incorporated acceptor and donor species. In the case of ZnSe:Cl, H was present in the ZnSe layers, but did not appear to adversely affect the electrical properties of the n-type films. In contrast, for the growth of ZnSe:N, where a nitrogen plasma cell was employed as a source of nitrogen, the H concentration (as determined by SIMS) was observed to track the N concentration. The ZnSe:N films were highly resistive for various amounts of N incorporation, which suggests that H incorporation is an issue of primary importance in the p-type doping of ZnSe grown by GSMBE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Haase, M. A., Qiu, J., DePuydt, J. M., Cheng, H., Appl. Phys. Lett. 59 (1991) 1272.Google Scholar
2 Jeon, H., Ding, J., Patterson, W., Nurmikko, A.V., Xie, W., Grillo, D. C., Kobayashi, M., Gunshor, R. L., Appl. Phys. Lett. 59 (1991) 3619.Google Scholar
3 Okuyama, H., Miyajima, T., Morinaga, Y., Hiei, F., Ozawa, M., Akimoto, K., Electron. Lett. 28 (1992) 1798; N. Nakayama, S. Itoh, T. Ohata, K. Nakano, H. Okuyama, M. Ozawa, A. Ishibashi, M. Ikeda, Y. Mori, Electron. Lett. 29 (1993) 1488.Google Scholar
4 Gaines, J. M., Drenten, R. R., Haberen, K. W., Marshall, T., Mensz, P., Petruzzcllo, J., Appl. Phys. Lett. 62 (1993) 2462.Google Scholar
5 Salokatve, A., Jeon, H., Ding, J., Hovinen, M., Nurmikko, A. V., Grillo, D. C., He, Li, Han, J., Fan, Y., Ringle, M., Gunshor, R. L., Hua, G. C., Otsuka, N., Electron. Lett. 29 (1993) 2192; H. Jeon, M. Hagerott J. Ding, A. V. Nurmikko, D. C. Grillo, W. Xie, M. Kobayashi, R. L. Gunshor, Optics Lett. 18 (1993) 125.Google Scholar
6 Johnson, N. M., Burnham, R. D., Street, R. A., Thornton, R. L., Phys. Rev. B 33 (1986) 1102.Google Scholar
7 Chevallier, J., Dautremont-Smith, W. C., Tu, C. W., Pearton, S. J., Appl. Phys. Let. 47 (1985) 108.Google Scholar
8 Cho, H. Y., Choi, W. C., Min, S., Appl. Phys. Lett. 63 (1993) 1558.Google Scholar
9 Rahbi, R., Pajot, B., Chevallier, J., Marbeuf, A., Logan, R. C., Gavand, M., J. Appl. Phys. 73 (1993) 1723.Google Scholar
10 Kozuch, D. M., Stavola, M., Pearton, S. J., Abernathy, C. R., Hobson, W. S., J. Appl. Phys. 73 (1993) 3716.Google Scholar
11 Wolk, J. A., Ager, J. W., Duxstad, K. J., Hailer, E. E., Taskar, N. R., Dorman, D. R., Olego, D. J., Appl. Phys. Lett. 63 (1993) 2756.Google Scholar
12 Kamnata, A., Mitsuhashi, H., Fujita, H., Appl. Phys. Lett. 63 (1993) 3353.Google Scholar
13 Pong, C., Johnson, N. M., Street, R. A., Walker, J., Feigelson, R. S., Mattei, R. C. De, Appl. Phys. Lett. 61 (1992) 3026.Google Scholar
14 Imaizumi, M., Endoh, Y., Ohstuka, K., Isu, T., Nunoshita, M., Jpn. J. Appl. Phys. 32 (1993) L1725; M. Imaizumi, Y. Endoh, K. Ohstuka, M. Suita, T. Isu, M. Nunoshita, Jpn. J. Appl. Phys. 33 (1994) L13.Google Scholar
15 Coronado, C. A., Ho, E., Fisher, P. A., House, J. L., Lu, K., Petrich, G. S., Kolodziejski, L. A., J. Electron. Mat. 23 (1994) 269.Google Scholar
16 Satoh, S., Igaki, K., Jpn. J. Appl. Phys. 20 (1981) 1889; S. Satoh, K. Igaki, Jpn. J. Appl. Phys. 22 (1983) 68.Google Scholar
17 Myhajlenko, S., Batstone, J. L., Hutchinson, H. J., Steeds, J. W., J. Phys. C 17 (1984) 6477.Google Scholar
18 Shahzad, K., Petruzzello, J., Olego, D. J., Cammack, D. A., Gaines, J. M., Appl. Phys. Lett. 57 (1990) 2452.Google Scholar
19 Ohkawa, K., Mitsuyu, T., Yamazaki, O., J. Appl. Phys. 62 (1987) 3216.Google Scholar
20 Zhu, Z., Takebayashi, K., Yao, T., Jpn. J. Appl. Phys. 32 (1993) 654.Google Scholar