Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T10:12:41.186Z Has data issue: false hasContentIssue false

Nanocomposites From Polymers and Layered Minerals

Published online by Cambridge University Press:  10 February 2011

H. R. Fischer
Affiliation:
TNO-TPD Institute of Applied Physics, Materials Division, P. 0. Box 595, 5600 AN Eindhoven, The Netherlands
L. H. Gielgens
Affiliation:
TNO-TPD Institute of Applied Physics, Materials Division, P. 0. Box 595, 5600 AN Eindhoven, The Netherlands
T. P. M. Koster
Affiliation:
TNO-TPD Institute of Applied Physics, Materials Division, P. 0. Box 595, 5600 AN Eindhoven, The Netherlands
Get access

Abstract

Composite materials consisting of polymeric matrix materials and natural or synthetic layered minerals like clays were prepared by using special compatibilizing agents between the two intrinsically non-miscible materials. These compatibiliseres are block- or graft copolymers combining one part of the polymer identically and/or completely miscible with the organic polymer (matrix compound) an another part compatible/miscible with the natural mineral. The interaction between the first part of the compatibiliser is preferentially an ionic interaction or an interaction via H-bonds. This interaction leads to a separation of the mineral into single sheets and a subsequent homogeneous incorporation of these sheets into the polymer matrix material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kawasumi, M., Kohzaki, M., Kojima, Y., Okada, A., Kamigaito, O., U.S. Patent 4,810734 (1989)Google Scholar
2 Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigato, O., J. Mater.Res., 8, 1179 (1993)10.1557/JMR.1993.1179Google Scholar
3 Arranda, P., Ruiz-Hitzky, E., Chem. Mater., 4, 1395 (1992)10.1021/cm00024a048Google Scholar
4 Wu, J., Lerner, M. M., Chem. Mater., 5, 835 (1993)10.1021/cm00030a019Google Scholar
5 Vaia, R. A., Vasudevan, S., Krawiec, W., Scalon, L. G., Giannelis, E. P., Adv. Mater., 7, 154 (1995)10.1002/adma.19950070210Google Scholar
6 Oriakhi, C. O., Nafshun, R. L., Lerner, M. W., MRS Bulletin, 31, 1513 (1996)10.1016/S0025-5408(96)00142-0Google Scholar
7 Kleinfeld, E. R., Ferguson, G. S., Science, 265, 370 (1994)10.1126/science.265.5170.370Google Scholar
8 Friedlander, H. Z., Frink, C. R., Polym. Lett., 2, 475 (1964)10.1002/pol.1964.110020435Google Scholar
9 Beall, G. W., Tsipurski, S., Sorokin, A., Goldman, A., U. S. Patent 5,578,672, (1996)Google Scholar
10 Kawasumi, M., Hasegawa, N., Kato, M., Ususki, A., Okada, A., Macromolecules, 30, 6333 (1997)10.1021/ma961786hGoogle Scholar
11 Miyata, S., Kumara, M.T., Chem. Lett., 1973, 842 Google Scholar
12 Lee, D. C., Jang, L. W., J. Appl. Polym. Sci., 61, 1117 (1996)10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P3.0.CO;2-P>Google Scholar