Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T19:43:48.021Z Has data issue: false hasContentIssue false

Nanocrystal Growth in Crystalline Insulators Irradiated with High-Current Cu IONs

Published online by Cambridge University Press:  15 February 2011

N. Kishimoto
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, kishin@nrim.go.jp
N. Umeda
Affiliation:
Tsukuba University, 1-1 Ten-nodai, Tsukuba, Ibaraki 305-0006, Japan
Y. Takeda
Affiliation:
Kharkov State University, Kharkov 310077, Ukraine
C.G. Lee
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, kishin@nrim.go.jp
V.T. Gritsyna
Affiliation:
Kharkov State University, Kharkov 310077, Ukraine
Get access

Abstract

Negative Cu ions of 60 keV have been applied to generate metal nanocrystals embedded in insulators. Crystalline (c-), amorphous (a-)SiO2 and a spinel oxide, MgO·2(Al2O3), were irradiated at various dose rates up to about 100 µA/cm2, at a total dose of 3.O×1016 ions/cm2. In a-Sio2, morphology of nanoparticles and the resultant optical property changed with dose rate and, at a critical condition, showed in-plane arrangement of nanocrystals. The optical property of c-Si0 2 (a-quartz) was qualitatively similar to that of a-SiO2, but the implanted region of c-SiO2 showed different irradiation responses. The c-SiO2 was susceptible to radiation-induced amorphization but the nanoparticle morphology was still different from a-SiO2, suggesting a stronger depth-oriented driving force. Unlike SiO2, the spinel oxide showed good structural stability against the implantation and no tendency of the long-range atomic rearrangement. The results indicate that the crystallinity and the relevant interactions may play an important role in the nanoparticle growth during the implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ruppin, R., J. Appl. Phys. 59, 1355 (1986).Google Scholar
[2] Hache, F., Richard, D., Flytzanis, C. and Kreibig, U., Appl. Phys. A 47, 347 (1988).Google Scholar
[3] Kishimoto, N., Gritsyna, V.T., Takeda, Y., Lee, C.G., Umeda, N., Saito, T., Mater. Res. Soc. Symp. Proc. (1997) in press.Google Scholar
[4] Kishimoto, N., Umeda, N., Takeda, Y., Lee, C.G., Gritsyna, V.T., in IBMM98, Nucl. Instrum. and Methods in Phys.Res. B (1999) in press.Google Scholar
[5] Ishikawa, J., Tsuji, H., Toyota, Y., Gotoh, Y., Matsuda, K., Tanjo, T. and Sasaki, S., Nucl. Instrum and Methods in Phys. Res. B96, 7 (1995).Google Scholar
[6] Kishimoto, N., Gritsyna, V.T., Kono, K., Amekura, H. and Saito, T., Nucl. Instrum. and Methods in Phys. Res. B127/128, 579 (1997).Google Scholar
[7] Kishimoto, N., Gritsyna, V.T., Kono, K., Amekura, H. and Saito, T., Mater. Res. Soc. Symp. Proc. Vol. 438, 435 (1997).Google Scholar
[8] Kishimoto, N., Gritsyna, V.T., Takeda, Y., Lee, C.G. and Saito, T., Nucl. Instrum. Methods in Phys. Res. B141, 299 (1998).Google Scholar
[9] Kishimoto, N., Takeda, Y., Gritsyna, V.T. and Iwamoto, E. and Saito, T., Proc. of 12th Int. Conf. on Ion Implantation Technology, IEEE (1999) in press.Google Scholar
[10] Magruder, R.H. III, Haglund, R.F. Jr, Yang, L., Wittig, J.E. and Zuhr, R.A., J. Appl. Phys., 76, 708 (1994).Google Scholar
[11] Hosono, H., Fukushima, H., Abe, Y., Weeks, R.A. and Zuhr, R.A., J. Non-Cryst.Solids, 143, 157 (1992).Google Scholar
[12] Park, S.Y., Weeks, R.A. and Zhur, R.A., J. Non-Cryst. Solids, 191, 281(1995).Google Scholar
[13] Liu, Z. and Wang, H., Nucl. Instrum. Methods in Phys. Res. B122,45 (1997).Google Scholar
[14] Devine, R.A.B., Nucl. Instrum. Methods in Phys. Res. B91, 378 (1994).Google Scholar
[15] Brongersma, M.L., Snoeks, E. and Polman, A., Appl. Phys. Lett. 71, 1628 (1997).Google Scholar
[16] Kinoshita, C., lsobe, Y., Abe, H., Denda, Y. and Sonoda, T., J. Nucl. Mater. 206, 341 (1992).Google Scholar
[17] Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985), Chap 8.Google Scholar
[18] Boscaino, R., Nucl. Inst. and Meth. in Phys. Res. B116, 373 (1996).Google Scholar
[19] Marimoto, W., J. Non-Cryst. Solids 196, 106 (1996).Google Scholar
[20] Takeda, Y., Gritsyna, V.T., Umeda, N., Lee, C.G. and Kishimoto, N., in IBMM98, Nucl. Instrum. and Methods in Phys.Res. B (1999) in press.Google Scholar