Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-08T18:14:05.745Z Has data issue: false hasContentIssue false

Neutron Vibrational Spectroscopy of the H5O2+ Ion and Its Deuterated Analog in Phosphotungstic Acid Hexahydrate

Published online by Cambridge University Press:  10 February 2011

N. C. Maliszewskyj
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
T. J. Udovic*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
J. M. Nicol
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
*
*To whom correspondence should be addressed
Get access

Abstract

Heteropolyacid hydrates of the general form H3PM12O40. nH2O are of interest to researchers in areas such as proton conductivity and catalysis. The water molecules in these hydrated acids reside in the interstitial volume between the large Keggin anions and can, under certain conditions, complex with the acidic protons to form stable cations such as the “dioxonium” ion (H5O2+). We have used incoherent inelastic neutron scattering (IINS) measurements of dodecatungstophosphoric acid hexahydrate (H3PW12O40 · 6H2O) to obtain the vibrational density of states spectrum of H5O2+ stabilized by the PW12O403− Keggin anions. Spectra were measure for fully hydrogenated and fully deuterated ions in order to determine the relative merit of previous assignments of the normal mode vibrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present Address: MOLTECH Corp., Bldg. 061, 9000 South Rita Rd., Tucson, AZ 85747

References

[1] Misono, M., Catal. Rev.-Sci. Engr. 29, 269 (1987).Google Scholar
[2] Slade, R. C. T., Pressman, H. A., and Skou, E., Solid State Ionics 38, 207 (1990).Google Scholar
[3] Brown, G. M., Noe-Spirlet, M.-R., Busing, W. R., and Levy, H. A., Acta Cryst. B33, 1038 (1977).Google Scholar
[4] Scheiner, S. and Čuma, M., J. Am. Chem. Soc. 118, 1511 (1996).Google Scholar
[5] Maliszewskyj, N. C., Udovic, T. J., and Huang, Q. (unpublished).Google Scholar
[6] Kearley, G. J., Pressman, H. A., and Slade, R. C. T., J. Chem. Soc. Chem. Comm. 1801 (1986).Google Scholar
[7] Mioč, U., Dimitrijević, R. v., Davidović, M., Nedić, Z. P., Mitrović, M. M., and Colomban, P., J. Mater. Sci. 29, 3705 (1994).Google Scholar
[8] Hodnett, B. K. and Moffat, J. B., J.Catal. 88, 253 (1984).Google Scholar
[9] Tjapkin, N., Davidović, M., Colomban, P., and Mioč, U., Solid State Ionics 61, 179 (1993).Google Scholar
[10] Lindstrom, R. M., J. Res. NatI. Inst. Stand. Technol. 98, 127 (1993).Google Scholar
[11] Copley, J. R. D., Neumann, D. A., and Kamitakahara, W. A., Can. J. Phys. 73, 763 (1995).Google Scholar
[12] Mioč, U., Colomban, P., Davidović, M., and Tomkinson, J., J. Mol. Struct. 326, 99 (1994).Google Scholar
[13] Kearley, G. J., White, R. P., Forano, C., and Slade, R. C. T., Spect. Acta 46A,419 (1990).Google Scholar