Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T21:29:44.201Z Has data issue: false hasContentIssue false

Nitrogen Radicals from Thermal and Photochemical Decomposition of Ammonium Perchlorate, Ammonium Dinitramide, and Cyclic Nitramines

Published online by Cambridge University Press:  15 February 2011

M. D. Pace*
Affiliation:
Code 6120, Naval Research Laboratory, Washington, D. C. 20375-5320
Get access

Abstract

Free-radical thermal and photochemical decomposition products of ammonium dinitramide (ADN), an acyclic nitramine, are compared to that of cyclic nitramines (RDX, HMX, and HNIW) and to ammonium perchlorate (AP). Photochemical formation of NO2 from uvphotolysis of ADN at 77 K is found to follow first-order kinetics; whereas, zero-order NO2 formation is observed from the cyclic nitramines under the conditions of this experiment. Mechanisms are suggested for ADN decomposition. A general trend of cyclic nitramines to thermally decompose forming nitroxide radicals is supported by 15N-ring-labeled HNIW results. ADN thermally decomposes at 19° C to form free-radical reaction products in solution with tetrahydrothiophene-1,1-dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pace, M. D. and Moniz, W. B., J. Magn. Reson. 47, 510 (1982).Google Scholar
2. McBride, J. M., presented at the ONR Workshop on Energetic Materials, Los Alamos, N. M., March, (1992).Google Scholar
3. Pace, M. D., J. Phys. Chem. 95, 5858, (1991).Google Scholar
4. Pace, M. D., Britt, A. D., and Moniz, W. B., J. Energ. Mater. 1 , 127, (1983).CrossRefGoogle Scholar
5. Britt, A. D., Pace, M. D., and Moniz, W. B., J. Energ. Mater. 1 , 367, (1983).CrossRefGoogle Scholar
6. Pace, M. D., J. Energ. Mater. 3 , 279, (1985).CrossRefGoogle Scholar
7. Pace, M. D., Mol. Cryst. Liq. Cryst. 219, 139, (1992).Google Scholar
8. Hyde, J. S. and Freeman, E. S., J. Phys. Chem. 65, 1636 (1961).Google Scholar
9. Cole, T., J. Chem. Phys. 35, 1169 (1961).Google Scholar
10. Fujimoto, M., and Morton, J. R., Can. J. Chem., 43, 9012, (1965).Google Scholar
11. Doyle, R. J., (in press).Google Scholar
12. Bircumshaw, L. L., and Newman, B. H., Proc. Roy. Soc. A227, 115, (1955).Google Scholar
13. Urbanski, T., Chemistry and Technology of Explosives. vol. II, p. 478482, (Pergammon Press, New York, 1965).Google Scholar
14. Melius, C., work presented at the ONR Workshop on Energetic Materials, Los Alamos, N. M., March, (1992).Google Scholar
15. Menapace, J. A., Marlin, J. E., Bruss, D. R., and Dascher, R. V., J. Phys. Chem. 95, 5509, (1991).Google Scholar
16. Yu., J., J. Phys. Chem. 96, 5746, (1992).Google Scholar