Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T08:27:34.485Z Has data issue: false hasContentIssue false

Nondestructive Evaluation of Fatigue Limit of Metals using Infrared Thermography

Published online by Cambridge University Press:  10 February 2011

M. P. Luong*
Affiliation:
CNRS-LMS Ecole Polytechnique, 91128 Palaiseau France, luong@athena.polytechnique.fr
Get access

Abstract

The paper aims to illustrate three advantages of infrared thermography as a non-destructive, real-time and non-contact technique. It permits first observation of the macrostructural aspects of thermoplasticity describing damage and failure processes in metals, and in particular, automotive components subjected to fatigue loading, second detection of the occurrence of intrinsic dissipation, and third evaluation of the fatigue strength in a very short time, compared to traditional fatigue testing techniques. In addition, infrared thermography readily describes the damage location and the evolution of structural failure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, D. H. (1985), A prediction of heat generation in a thermoviscoplastic uniaxial bar, Int. J. Solids & Structures 21(4), 325342.Google Scholar
2. Attermo, R. and Östberg, G. (1971), Measurements of the temperature rise ahead a fatigue crack, Int. J. Fract. Mech., 7, 122124.Google Scholar
3. Ballard, P., Dang-van, K., Deperrois, A. and Papadopoulos, Y. V. (1995), High cycle fatigue and a finite element analysis, Fatigue Fract. Engng Mater. Struct., 18(3), 397411.Google Scholar
4. Bui, H. D., Ehrlacher, A. et Nguyen, Q. S. (1981), Etude expérimentale de la dissipation dans la propagation de la fissure par thermographie infrarouge, C.R. Acad. Sci., 293, II, 10151017.Google Scholar
5. Bui, H. D., Ehrlacher, A. and Nguyen, Q. S. (1987), Thermomechanical coupling in fracture mechanics, Thermomechanical coupling in Solids, H.D. Bui and Q.S. Nguyen ed., Elsevier Sci. Pub., IUTAM, 327–341.Google Scholar
6. Bui, H. D. and Stolz, C. (1987), Damage theories for brittle and ductile materials, Fracture of Non-Metallic Materials,ed. Herrmann & Larsson, 3346.Google Scholar
7. Charles, J. A., Appl, F. J. and Francis, J.E. (1975), Using the scanning infrared camera in experimental fatigue studies, Exp. Mech., 14(4), 133138.Google Scholar
8. Dang-van, K. (1973), Sur la résistance à la fatigue des métaux, Sc. et Techn. Armement, Mémorial Artillerie Française, 3e fascicule, 647–722.Google Scholar
9. Deperrois, A; (1991), Sur le calcul de limite d'endurance des aciers, Thèse de Doctorat de l'Ecole Polytechnique.Google Scholar
10. Dillon, O. W.Jr. (1963), Coupled thermoplasticity, J. Mech. Phys. Solids, 11, 2123.Google Scholar
11. Ellyin, F. and Kujawski, D. (1984), Plastic strain energy in fatigue failure, Trans. ASME, 106, Nov. 1984, 342347.Google Scholar
12. Habib, K. and Husain, A. (1994), Failure analysis of a broken diesel engine, Fatigue, Butterworth-Heinemann Ltd, 16(July 1994), 357359.Google Scholar
13. Irwin, G. R. (1965), Fracture, Encyclopedia of Physics, II, Springer-Verlag, Heidelberg, 7.Google Scholar
14. Kachanov, L. M. (1958), Time of rupture process under creep conditions, Izv. Akad. Nauk. S.S.R.Otd. Tekh. Nauk., 8, 2631.Google Scholar
15. Kratochvil, J. and Dillon, O. W.Jr. (1969), Thermodynamics of elastic-plastic materials as a theory with internal state variables, J. Appl. Phys., 40, 32073218.Google Scholar
16. Lee, E.H. (1969), Elastic plastic deformations at finite strains, J. Appl. Mech., 36, 16.Google Scholar
17. Lehman, Th. (1979), Coupling phenomena in thermoplasticity, SMiRT5 Berlin, Paper L1/1.Google Scholar
18. Luong, M.P. (1990), Infrared thermovision of damage processes in concrete and rock, Engineering Fracture Mechanics, 35(1–2–3), 127135.Google Scholar
19. Mann, J. Y. (1983), Aircraft fatigue with particular emphasis on Australian operations and research, Proc. 12th ICAF Symp. May 1983 Toulouse, ed. R., Labourdette & D., Deviller, Paper 1.0.Google Scholar
20. McLester, R. (1988), Railway component fatigue testing, Full-scale fatigue testing of components and structures, ed. K.J., Marsh, Butterworths, 5976.Google Scholar
21. Moore, H. F. and Kommers, J. B. (1921), Fatigue of metals under repeated stress, Chemical and Metallurgical Engineering, 25, December 21, 11411144.Google Scholar
22. Morrow, J. D. (1965), Cyclic plastic strain energy and fatigue of metals, Internal Friction Damping and Cyclic Plasticity, ASTMSTP 378, July, 4584.Google Scholar
23. Mroz, Z. (1983), Hardening and degradation rules for metals under monotonic and cyclic loading, J. Engng Mater. Techn., ASME, 105, April 1983, 113119.Google Scholar
24. Mroz, Z. (1986), Phenomenological constitutive models for metals, Modelling small deformations of polycrystals, Elsevier, 293344.Google Scholar
25. Mroz, Z. and Raniecki, B. (1976), On the uniqueness problem in coupled thermoplasticityGoogle Scholar
26. Int. J. Eng. Sci., 14, 211221.Google Scholar
27. Nied, H. A. and Batterman, S. C. (1976), On the thermal feedback reduction of latent energy in the heat conduction equation, Mater. Sci. Eng., 9, 243245.Google Scholar
28. Raniecki, B. and Sawczuk, A. (1975), Thermal effects in plasticity, Z Angew Math Mech., 55, 333341, 363.Google Scholar
29. Taylor, G. I. and Farren, W. S. (1925), The heat developed during plastic extension of metals, Proc. Roy. Soc., A(107), 422428.Google Scholar