Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:29:29.849Z Has data issue: false hasContentIssue false

Non-Linear and Time-Dependent Diffusion of Gold in Amorphous Silicon.

Published online by Cambridge University Press:  28 February 2011

A. V. Wagner
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138, USA
D. T. Wu
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138, USA
F. Spaepen
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138, USA
Get access

Abstract

By performing scaling experiments [1] and examining the evolution of the spatial second moment of the concentration profile, it was shown that the diffusion coefficient of gold in amorphous silicon is both concentration and time dependent. The second moment curves for different temperature anneals can be scaled to a master curve using a factor with an activation enthalpy of 2.0 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, D.T., in Semiconductor Materials and Processing Technologies, edited by Coffa, S., Priolo, F., Rimini, E. and Poate, J.M., NATO-ASI Series, Kluwer, Dordrecht, The Netherlands (1992), in press.Google Scholar
2. Taub, A.I. and Spaepen, F., Acta Met. 28, 1781 (1980).Google Scholar
3. Tsao, S.S. and Spaepen, F., Acta Met. 33, 891 (1985).CrossRefGoogle Scholar
4. Greer, A.L., Lin, C.J. and Spaepen, F., Proc. Fourth Int. Conf. on Rapidly Quenched Metals (Sendia: Japanese Institute of Metals) 1, 567 (1981).Google Scholar
5. Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A.S. (Academic, Orlando, 1984), p. 63.CrossRefGoogle Scholar
6. Stolwijk, N.A., Hölzl, J., Frank, W., Weber, E.R. and Mehrer, H., Appl. Phys. A 39, 37 (1986).Google Scholar
7. Park, B., Spaepen, F., Poate, J.M., and Jacobson, D.C., J. Appl. Phys. 69, 6430 (1991).CrossRefGoogle Scholar
8. Nygren, E., Park, B., Goldman, L.M. and Spaepen, F., Appl. Phys. Lett. 56, 21 (1990).Google Scholar
9. Poate, J.M., Jacobson, D.C., Williams, J.S., Elliman, R.G. and Boerma, D.O., Nucl. Instr. and Meth. B19/20, 480 (1987).Google Scholar
10. Calcagno, L., Campisano, S.U. and Coffa, S., J. Appl. Phys. 66, 1874 (1989).CrossRefGoogle Scholar
11. Spaepen, F., Greer, A.L., Kelton, K.F., and Bell, J.L., Rev. Sci. Instrum. 56, 1340 (1985).CrossRefGoogle Scholar
12. Wu, D.T., to be published.Google Scholar
13. Wagner, A.V., Wu, D.T. and Spaepen, F., to be published.Google Scholar