Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T18:30:58.476Z Has data issue: false hasContentIssue false

Novel Applications Of Ceramic Precursors - Tin Coating On Alumina And Functionally Gradient Materials

Published online by Cambridge University Press:  10 February 2011

D. Seyferth
Affiliation:
Department of Chemistry, Rm 4-382, Massachusetts Institute of Technology, Cambridge, MA 02139
C. K. Narula
Affiliation:
Department of Chemistry, Ford Motor Company, P.O. Box 2053, MD 3083, Dearborn, MI 48121
P. Czubarow
Affiliation:
Corporate Technology, Raychem Corporation, 300 Constitution Drive, MS 123/6614, Menlo Park, CA 94025
Get access

Abstract

There are very few demonstrated applications of ceramic precursor technology. Here, we describe two new applications of known ceramic precursors, thin film deposition and the fabrication of functionally gradient materials [FGM]. To demonstrate the thin film deposition, we prepared titanium nitride film on an alumina substrate using (CH3)3SiNHTiCl3 precursor by a single dipcoat-fire cycle. The fabrication of copper and aluminum based FGMs was demonstrated using Nicalon® fiber polycarbosilane and poly(methylsilane) precursors as binders and in situ sources of ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narula, C. K., Ceramic Precursor Technology and Its Applications, Marcel Dekker, New York, 1995.Google Scholar
2. Yajima, S., Hayashi, J., Omori, M., Chem. Lett., 931 (1975); J. Hayashi, M. Omori, S. Yajima, S. U.S. Patent No. 4,159,259, 1979; S. Yajima, K. Okamura, J. Hayashi, Chem. Lett. 1209 (1975); S. Yajima, K. Okamura, J. Hayashi, J. Omori, J. Am. Ceram. Soc. 59, 324 (1976); S.Yajima, Am. Ceram. Soc. Bull. 62, 893 (1983); Y.Hasegawa, M.limura, S.Yajima, J. Mater. Sci. 15, 720 1980).Google Scholar
3. Narula, C.K., US Patent 5,087,593 (1992). Narula, C.K., Mat. Res. Soc. Symp. Proc., 271 881 (1992).Google Scholar
4. T. Matsumura, Jap. Pat. 62, 83,380 (1987), Chem. Abstr., 107, 27432g (1987).Google Scholar
5. Ogino, K., Kamiya, K., Yokoo, T., Makita, K., Jap.Pat. 62,263,322 (1987), Chem. Abstr., 108, 99961x (1987).Google Scholar
6. Semen, J.,.Loop, J. G., Ceram. Eng. Sci. Proc. 12, 1967 (1991); D. Mohr, P. Desai, T. Starr, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 32, 565 (1991); S.T. Schwab, C.R. Blanchard, R.C. Graef, J. Mater. Sci. 29, 6320 (1994).Google Scholar
7. Wynne, K.J., Rice, R.W., Ann. Rev. Mater. Sci. 14, 297 (1984).Google Scholar
8. Yajima, S., Shishido, T., Kayano, H., Nature, 264, 237 (1976); D. Seyferth, P. Czubarow, Chem. Mater. 6, 10 (1994).Google Scholar
9. Seyferth, D., Czubarow, P., US Patent No. 5,455,000 (1995).Google Scholar
10. Seyferth, D., Sobon, C.A., Borm, J., New I. Chem. 14, 545 (1990).Google Scholar
11. Seyferth, D., Wood, T.G., Tracy, H.J., Robison, J.L., J. Am. Ceram. Soc. 75, 1300 (1992).Google Scholar
12. Yee, D.S., Cuomo, J.J., Frisch, M.A., Smith, D.P.E., J. Vac. Sci. Technol. A, 4, 381 (1986); K. Schwartz, D.S. Yee, J.J. Cuomo, J.M.E. Harper, Phys. Rev. B, 32, 5419 (1985); R. Fix, R.G. Gordon, D.M. Hoffman, Chem. Mater., 3, 1138, (1991); C.H. Winter, P.H. Sheridan, T.S. Lewkebandara, M.J. Heeg, J.W. Proscia, J. Am. Chem. Soc.,114, 1095, (1992).Google Scholar
13. Schlegel, A., Wachter, P., Nickl, J.J., Lingg, H., J. Phys. C: Solid State Phys. 10, 4889 (1977); S.R. Kurtz, R.G. Gordon, Thin Solid Films 140, 277 (1986).Google Scholar
14. Gupta, S., Song, J.-S., Ramachandran, V., Semiconduct. Int. 12, 80 (1989). C.Y. Ting, J. Vac. Sci. Technol. 21, 14 (1982). J. Hems, Semiconduct. Int. 13, 100 (1990).Google Scholar
15. Eittmer, M., J. Vac. Sci. Technol. 3, 1797 (1985).Google Scholar
16. Hunt, T.K., Weber, N., Cole, T., Solid State Ionics, 5, 263 (1981).Google Scholar
17. Narula, C.K., Visser, J.H., Adamczyk, A., US Patent Application 08/270617, July 5, 1994 (granted).Google Scholar
18. Arnold, W.H. III, Farnoarn, M., Siliwa, T., US Patent 4,820,611 (1989).Google Scholar
19. Palty, A.E., Margolin, H., Nielsen, J.P., Trans. Am. Soc. Metals 46, 312 (1954). P. Ehrlich, Z. Anorg. Allg. Chem. 259, 1 (1949).Google Scholar
20. Mathers, J.P., Forester, T.E., Wood, W.P., Am. Ceram. Soc. Bull. 68, 1330 (1989). Z. Jiang, W.E. Rhine, Chem. Mater. 6, 1080 (1994).Google Scholar
21. Robinson, K.S., Sherwood, P.M.A., SIA, Surf. Interface Anal. 6, 261 (1984). N. Heide, B. Siemensmeyer, J.W. Schultze, SIA, Surf Interface Anal., 19, 423 (1992).Google Scholar
22. Bertoncello, R., Casagrande, A., Casarin, M., Gilisenti, A., Lanzoni, E., Mirenghi, L., Tondello, E., SIA, Surf Interface Anal.., 18, 525 (1992).Google Scholar
23. Yoshitake, A., Tamura, M., Shiota, I., Niino, M., Space Applications of Advanced Structural Materials, Proceedings of International Symposium; (European Space Agency, Noordwijk, Netherlands, 1990) p.103; M. Takemura, T. Hyakuba, A. Yoshitake, M. Tamura, M. Niino, A. Kumakawa, Ceram. Trans. 34, 271 (1993).Google Scholar
24. Bishop, A., Lin, C.-Y., Navaratnam, M., Rawlings, R.D., McShane, H.B., J. Mat. Sci. Lett. 12, 1516 (1993).Google Scholar
25. Wohlers, T., Creating Parts by the Layers, Cadence, 1989, 73; Sachs, E.M., Cima, M., Bredt, J., Curodeau, A., Manufac. Rev. 5, 117 (1992); E.M. Sachs, J.S. Haggerty, M.J. Cima, P.A. Williams, U.S. Patent 5,204,055 (1993).Google Scholar