Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T11:30:34.560Z Has data issue: false hasContentIssue false

A Novel Low Temperature Synthesis Method for Semiconductor Nanowires

Published online by Cambridge University Press:  21 March 2011

Shashank Sharma
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Mahendra K. Sunkara*
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Raul Miranda
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Guoda Lian
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
Elizabeth C. Dickey
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
*
* Corresponding author: mahendra@louisville.edu
Get access

Abstract

We present a novel synthesis technique to grow bulk quantities of semiconductor nanowires at temperatures less than 500 °C. Gallium is used as the liquid medium in a mechanism similar to vapor-liquid-solid (VLS). We demonstrated this low temperature technique with silicon and carbon nanowires. Gallium exhibits extremely low solubility for several elemental semiconductors. This property enables nucleation and growth of nanometer scale wires from large sized gallium droplets (>1 μm) eliminating the need for creation of quantum sized metal droplets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lieber, C.M., Solid State Comm 107 (11), 607616 (1998).Google Scholar
2. Wu, C., Prism 10(3), 2126 (2000).Google Scholar
3. S-W, Chung, J-Y, Yu, and Heath, J.R., Appl. Phys. Lett. 76 (15), 20682070 (2000).Google Scholar
4. Au, F.C.K. et al., Appl. Phys. Lett. 75 (12), 17001702 (1999).Google Scholar
5. Zunger, A. and L-W, Wang, Appl. Surf. Sc. 102, 350359 (1996).Google Scholar
6. Saitta, A.M., Buda, F., Fiumara, G., and Giaquinta, P.V., Phys. Rev. B 53 (3), 14461451 (1996).Google Scholar
7. Iijima, S., Nature (London) 354, 56 (1991).Google Scholar
8. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (5), 89 (1964).Google Scholar
9. Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).Google Scholar
10. Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., Ruda, H., J. Vac. Sc. Technol. B 15 (3), 554557 (1997).Google Scholar
11. Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S. T., Appl. Phys. Lett. 72 (15), 18351837 (1998).Google Scholar
12. Kukovitsky, E.F., L'vov, S.G., and Sainov, N.A., Chem. Phys. Lett. 317, 6570 (2000).Google Scholar
13. Tang, Y.H., Wang, N., Zhang, Y.F., Lee, C.S., Bello, I., and Lee, S.T., Appl. Phys. Lett. 75 (19), 29212923 (1999).Google Scholar
14. Wu, Y. and Yang, P., Chem. Mater. 12, 605607 (2000).Google Scholar
15. Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mat. 13 (2), 113116 (2001).Google Scholar
16. Liu, Z.Q., Pan, Z.W., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., and Xie, S.S., J. Phy. Chem. Solids 61, 1171 (2000).Google Scholar
17. Holmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A., Science 287, 14711473 (2000).Google Scholar
18. Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., and Feng, S.Q., Chem. Phys. Lett. 323, 224 (2000).Google Scholar
19. Zhang, Y.F., Tang, Y.H., Wang, N., Lee, C.S., Bello, I., and Lee, S. T., J. Crystal Growth 197, 136 (1999).Google Scholar
20. Sunkara, M.K., Sharma, S., Miranda, R., Dickey, E. C., and Lian, G., Submitted for publication, March 2001.Google Scholar
21. Thurmond, C. D. and Kowalchik, M., The Bell System Tech. J. 39, 169204 (1960).Google Scholar