Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T20:00:47.624Z Has data issue: false hasContentIssue false

Novel Thermal Transport in Stable Binary Cd5.7Yb Quasicrystals

Published online by Cambridge University Press:  21 March 2011

A.L. Pope
Affiliation:
Dept. of Physics and Astronomy Clemson University, Clemson, SC 29634, USA
T.M. Tritt
Affiliation:
Dept. of Physics and Astronomy Clemson University, Clemson, SC 29634, USA
R. Gagnon
Affiliation:
Dept. of Physics McGill University, Montreal, Canada
J. Strom-Olsen
Affiliation:
Dept. of Physics McGill University, Montreal, Canada
Get access

Abstract

Quasicrystalline materials have been investigated for application as thermoelectric materials due to their inherently low thermal conductivity. With the discovery of a new stable, binary Cd5.7Yb quasicrystal, thermal and electrical transport measurements have been performed on these materials. It is found that the electronic contribution to the thermal conductivity calculated from the Wiedemann-Franz relationship is comparable to or greater than the total measured thermal conductivity, leaving the appearance of a “negligible lattice contribution.” In addition, no semblance of the lattice contribution appears in the temperature dependence of the thermal conductivity. The thermal conductivity increases linearly with temperature above 75K and proportional to T3/4 between 2 K and 75 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W.. Phys. Rev. Lett. 53, 1951 (1984).Google Scholar
2. Thiel, P.A. and Dubois, J. M.. Materials Today, 2, 3 (1999) and M. Brown, Technical Insights' Futuretech, No 253, Wiley Press (April 5, 1999).Google Scholar
3. Slack, G. A., in CRC Handbook on Thermoelectrics, Rowe 407 (1995).Google Scholar
4. Macià, E.. Appl. Phys. Lett. 77, 3045 (2000). and E. Macià. Phys. Rev. B 64, 94206 (2001).Google Scholar
5. Pope, A.L., Tritt, T. M., Chernikov, M.A., Feuerbacher, M.. Appl.Phys. Lett. 75, 1854 (1999).Google Scholar
6. Tsai, A. P., Guo, J Q., Abe, E., Takakura, H., Sato, T. J.. Nature 408, 537 (2000).Google Scholar
7. Day, C.. Phys. Today 54, 17 (2001).Google Scholar
8. Pope, A. L., Littleton, R. T., and Tritt, T. M.. Rev. Sci. Instrum. 72, 3129 (2001).Google Scholar
9. Pope, A. L., Zawilski, B., and Tritt, T. M.. In press Cryogenics. (2001).Google Scholar
10. Akiyama, H., Hashimoto, T., Shibuya, T., Edagawa, K., and Takeuchi, S.. Journal of the Physical Society of Japan. 62, No 2, 639646 (1993).Google Scholar
11. Janot, C.. Phys. Rev. B. 53,181 (1996).Google Scholar
12. Chernikov, M. A., Paschen, S., Felder, E., Vorburger, P., Ruzicka, B., Degiorgi, L., Ott, H. R., Fisher, I. R. and Canfield, P. C.. Phys. Rev. B 62, 262 (2000).Google Scholar
13. Hattori, Y., Fukamichi, K., Suzuki, K., Niikura, A., Tsai, A.P., Inoue, A., Masumoto, T.. Journal of Physics: Condensed Matter 7, 4183 (1995).Google Scholar
14. Brand, R. A., Coddens, G., Chumakov, A. I., Dianoux, A. J. and Calvayrac, Y.. Materials Science and Engineering A, 294–296, 662 (2000).Google Scholar
15. Wosnitza, J., Berg, R. van den, Löhneysen, H. v., Poon, S. J.. Z. Physik B 70, 31 (1998).Google Scholar