Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T01:17:22.963Z Has data issue: false hasContentIssue false

Numerical Simulations of Creep in Ductile-Phase Toughened Intermetallic Matrix Composites

Published online by Cambridge University Press:  15 February 2011

Gregory A. Henshall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551 (USA)
Michael J. Strum
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551 (USA)
Get access

Abstract

Analytical and finite element method (FEM) simulations of creep in idealized ductilephase toughened intermetallic composites are described. For these strong-matrix materials, the two types of analyses predict similar time-independent composite creep rates if each phase individually exhibits only steady-state creep. The composite creep rate increases above that of the monolithic intermetallic with increases in the stress exponent of the intermetallic, the volume fraction of the ductile phase, and the creep rate of the ductile phase. FEM analysis shows that the shape of the ductile phase does not affect the creep rate but may affect the internal stress and strain distributions, and thus damage accumulation rates. If primary creep occurs in one or both of the individual phases, the composite also exhibits primary creep. In this case, there can be significant deviations in the creep curves computed by the analytical and FEM models. The model predictions are compared with data for the Nb5Si3/Nb system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Sigl, L. S., Mataga, P. A., Dalgleish, B. J., McMeeking, R. M. and Evans, A. G., Acta Metall. 39 (1988), 945953.Google Scholar
2) Mendiratta, M. G., Lewandowski, J. J. and Dimiduk, D. M., Metall. Trans. 22A, 1573 (1991).Google Scholar
3) Thirukkonda, M., Cockeram, B., Saqib, M., Matson, L. E., Srinivasan, R. and Weiss, I., Scripta Metall. Mater. 27, 711 (1992).Google Scholar
4) Biner, S. B., in Processing and Fabrication of Advanced Materials, TMS Publications, Warrendale, PA, to appear.Google Scholar
5) Subramanian, P. R., Mendiratta, M. G., and Dimiduk, D. M., presented at the MRS Fall Meeting, Boston, MA, 1992 (unpublished).Google Scholar
6) Dragone, T. L. and Nix, W. D., Acta Metall. 38, 1941 (1990).Google Scholar
7) Dragone, T. L., Schlautmann, J. J. and Nix, W. D., Metall. Trans. 22A, 1029 (1991).Google Scholar
8) Park, Y. H., Holmes, J. W., J. Mater. Sci. 27, 6341 (1992).Google Scholar
9) Bullock, E., McLean, M., and Miles, D. E., Acta Metall. 25, 333 (1977).Google Scholar
10) McLean, M., in Mat. Res. Soc. Proc. Vol. 120, Lemkey, F. D. et al. , eds., Materials Research Society, Pittsburgh, PA, p. 67 (1988).Google Scholar
11) Tanaka, M., Sakaki, T., and lizuka, H., Acta Metall. Mater. 39, 1549 (1991).Google Scholar
12) Christman, T., Needleman, A., Suresh, S., Acta Metall. 37, 3029 (1989).Google Scholar
13) Tvergaard, V., Acta Metall. Mater. 38, 185 (1990).Google Scholar
14) Henshall, G. A. and Strum, M. J., Scr. Metall. Mater. 30, 845 (1994).Google Scholar
15) Engelmann, B. E., ”NIKE2D User Manual,” University of California - Lawrence Livermore National Laboratory, UCRL-MA- 105413, 1991.Google Scholar
16) Whirley, R. G. and Henshall, G. A., Int. J. Numer. Methods Engng. 35, 1427 (1992).Google Scholar
17) Forsythe, G. E., Malcom, M. A., and Moler, C. B., Computer Methods for Mathematical Computations. (Prentice-Hall, Englewood Cliffs, NJ, 1977), p.170.Google Scholar