Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T12:37:26.841Z Has data issue: false hasContentIssue false

Observation of the CdTe-GaAs Interface by High Resolution Electron Microscopy

Published online by Cambridge University Press:  26 February 2011

N. Otsuka
Affiliation:
Purdue University W. Lafayette, IN 47907
L. A. Kolodziejski
Affiliation:
Purdue University W. Lafayette, IN 47907
R. L. Gunshor
Affiliation:
Purdue University W. Lafayette, IN 47907
S. Datta
Affiliation:
Purdue University W. Lafayette, IN 47907
R. N. Bicknell
Affiliation:
Department of Physics North Carolina State University Raleigh, North Carolina 27695-8202
J. F. Schetzina
Affiliation:
Department of Physics North Carolina State University Raleigh, North Carolina 27695-8202
Get access

Abstract

CdTe films have been grown on GaAs substrates with two types of interfaces - one with the epitaxial relation (111)CdTe║ (100)GaAs and the other with (100)CdTe║ (100)GaAs,. High resolution electron microscope observation of the two types of interfaces was carried out in order to determine the role of the substrate surface microstructure in determining the epitaxy. The interface of the former type shows a direct contact between the CdTe and GaAs crystals, while the interface of the latter type has a very thin oxide layer (∼10 Å in thickness) between the two crystals. These observations suggest that details of the substrate preheating cycle prior to film growth is the principle factor in determining which epitaxial relation occurs in this system. The relation between interfacial structures and the origin of the two epitaxial relations is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Farpow, R.F.C., Jones, G. R., Williams, G. M., and Young, I. M.: Appl. Phys. Lett., 39, 954 (1981).Google Scholar
2. Myers, T.H., Lo, Yowcheng, Schetzina, J. F., and Jost, S. R.: J. Appl. Phys., 53, 8232 (1982).Google Scholar
3. Faurie, J. P., Million, A. and Piagnet, J., Appl. Phys. Lett., 41, 713 (1982).Google Scholar
4. Chow, P. P., Greenlaw, D. K., and Johnson, D.: J. Vac. Sci. Technol., Al, 562 (1983).Google Scholar
5. Myers, T. H., Lo, Yowcheng, Bicknell, R. N., and Schetzina, J. F.: Appl. Phys. Lett., 42, 247 (1983).Google Scholar
6. Nishitani, K., Okhata, R., and Murotani, T.: J. Electron. Mater., 12, 619 (1983).Google Scholar
7. Mar, H. A., Chee, K. T., and Salansky, N.: Appl. Phys. Lett., 44, 237 (1984).Google Scholar
8. Bicknell, R. N., Yanka, R. W., Giles, N. C., Schetzina, J. F., Magee, T. J., Leung, C., and Kawayoshi, H.: Appl. Phys. Lett., 44, 313 (1984).Google Scholar
9. Kolodziejski, L. A., Sakamoto, T., Gunshor, R. L., and Datta, S.: Appl. Phys. Lett., 44, 799 (1984).CrossRefGoogle Scholar
10. Kolodziejski, L. A., Bonsett, T. C., Gunshor, R. L., Datta, S., Bylsma, R. B., Becker, W. M., and Otsuka, N.: Appl. Phys. Lett., 45, 440 (1984).Google Scholar
11. Cheung, J. T., private communication.Google Scholar
12. Ploog, K.: Ann. Rev. Mater. Sci., 11, 171 (1981).Google Scholar
13. Cho, A. Y.: J. Appl. Phys., 47, 2841 (1976).Google Scholar
14. Cowley, J. M.: “Diffraction Physics” (North Holland, American Elsevier, Amsterdam, 1975).Google Scholar
15. Yamashita, T., Ponce, F. A., Pirouz, P., and Sinclair, R.: Phil. Mag., A45, 693 (1982).Google Scholar
16. Mar, H. A., Salansky, N., and Chee, K. T.: Appl. Phys. Lett., 44, 898 (1984).Google Scholar
17. Goodnick, S. M., Gann, R. G., Sites, J. R., Ferry, D. K., Wilmsen, C. W., Fathy, D., and Krivanek, O. L.: J. Vac. Sci. Technol., B 1, 803 (1983).Google Scholar