Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-06T13:25:56.573Z Has data issue: false hasContentIssue false

Observation of the Ga Self-Interstitial Defect in GaP

Published online by Cambridge University Press:  26 February 2011

K. M. Lee*
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07874
Get access

Abstract

The first experimental evidence of an isolated self-interstitial defect in an as-grown semiconductor is reported. An optically detected magnetic resonance spectrum observed in GaP [0] was identified as arising from a Ga selfinterstitial. The large isotropic hyperfine splittings (g = 2.003 (3), A(69Ga) = 741(5)×10−4 cm−1 and A(71Ga) -941[5]×10− 4 cm−1) revealed that a single Ga atom at a Td-symmetric site is the center of the defect. The interstitial nature is established by theoretical considerations. The spin dependent recombination process is attributed to a non-radiative donor-acceptor-pair process involving the Ga++ state which is in competition with a radiative (Odeg; - A° ) pair process and an electron capture process at O-donor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Lee, K. M., O'Donnell, K. P., Weber, J., Cavenett, B.C. and Watkins, G. D., Phys. Rev. Lett. 48, 37 (1982).Google Scholar
[2]Kennedy, T. A. and Spencer, M. G., Phys. Rev. Lett. 57, 2690 (1986).Google Scholar
[3]Rong, F. and Watkins, G. D., Phys. Rev. Lett. 58, 1486 (1987).Google Scholar
[4] This sample has been used for piezospectroscopic study reported in Nash, K. J., Dean, P. J. and Skolnick, M. S., in 18th Int. Conf. on Defects in Semiconductors, op. cit., p. 1083.Google Scholar
[5]Dean, P. J. and Henry, C. H., Phys. Rev. 176, 928 (1968).Google Scholar
[6]Dawei, Y. and Cavenett, B. C., J. Phys. C 17, 6367 (1984).Google Scholar
[7]Gal, M., Cavenett, B. C., and Smith, P., Phys. Rev. Lett. 43, 1611 (1979).Google Scholar
[8]Toyotomi, S. and Morigaki, K., J. Phys. Soc. Japan 29, 800 (1970).Google Scholar
[9]Lee, K. M., Kimerling, L. C., and Sturge, M. D., in Microscopic Identification of Defects in Semiconductors, edited by Johnson, N. M., Bishop, S. G. and Watkins, G. D., Mat. Res. Soc. Symp. Proc. Vol.46 (Mat. Res. Soc., Pittsburgh, 1985), p. 319.Google Scholar
[10]Kaufmann, U., Schneider, J., and Rauber, A., Appl. Phys. Lett. 29, 312 (1976).Google Scholar
[11]Oa'Donnell, K. P., Lee, K. M., and Watkins, G. D., Sol. St. Comm. 44, 1015 (1982).Google Scholar
[12]Killoran, N., Cavenett, B. C., Godlewski, M., Kennedy, T. A., and Wilsey, N. D., J. Phys. C15, L723 (1982).Google Scholar
[13]Kennedy, T. A. and Wilsey, N. D., Appl. Phys. Lett. 44, 1 (1984).Google Scholar
[14]Wagner, R. J., Krebs, J. J., Strauss, G. H., and White, A. M., Sol. St. Comm. 36, 15 (1980).Google Scholar
[15]Baraff, G. A. and Schluter, M., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
[16]Mehran, F., Morgan, T. N., Title, R. S., and Blum, S. E., J. Mag. Res. 6, 620 (1972).Google Scholar
[17]Dean, P. J., Henry, C. H., and Frosch, C. J., Phys. Rev. 168, 812 (1968).Google Scholar