Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T23:29:22.453Z Has data issue: false hasContentIssue false

Obtaining and characterization of the alumina-zirconia nanocomposite

Published online by Cambridge University Press:  13 February 2012

Eliria M. J. A. Pallone
Affiliation:
Ciências Básicas, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
Kátia L. Silva
Affiliation:
Engenharia Mecanica, UNICAMP, Campinas, São Paulo, Brazil
Roberto Tomasi
Affiliation:
Engenharia de Materiais, UFSCar, São Carlos, São Paulo, Brazil
Vania T. Hernandes
Affiliation:
IPEN, São Paulo, São Paulo, Brazil.
Cecilia Zavaglia
Affiliation:
Engenharia Mecanica, UNICAMP, Campinas, São Paulo, Brazil
Get access

Abstract

Ceramics of alumina of high density and purity can have a broad application area due to the combination of the excellent properties such as resistance to corrosion, good biocompatibility, and high resistance to wear and moderate mechanical resistance. But its low fracture toughness limits its range of applications. One possibility of improvement in the properties of these materials might be in the use of nanometric inclusions of ZrO2 into the matrix of Al2O3. The aim of this paper was to obtain and characterize the nanocomposites of alumina containing 0, 5, 10, 15 and 30 vol% of nanometric zirconium, seeking improvements in the mechanical properties and its comparison with values found for the matrix without the inclusion. For that, nanometric particles of ZrO2 were added into the matrix of alumina in the different proportions, using mixture of suspensions. The samples of alumina and nanocomposites of alumina-zirconium were physically, microstructurally and mechanically characterized. The results obtained, showed the efficiency of the used process, obtaining a good dispersion of the particles of zirconium in the matrix of alumina. The adding of up to 15vol% nanometric zirconium in the matrix of alumina promoted an increase in the values of the mechanical properties when compared with alumina. For the nanocomposites containing 30vol%, a good dispersion of the zirconium inclusions did not happen, leading to inferior values in the measured properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guimarães, F. A. T., Silva, K. L., Trombini, V., Pierre, J., Rodrigues, J. A., Tomasi, R., Pallone, E. M. J. A., Ceramics International, v. 35, p. 741745(2009).Google Scholar
2. IU, G. J. L, QUI, H.B., TOOD, R., BROOK, R.J., GUI UO, J.K., Materials Research Bulletim, v.33, [2], p. 281288 (1998).Google Scholar
3. Nakahira, A., Niihara, K., J. Ceram. Soc. Jpn., v. 100, p. 448453 (1992).Google Scholar
4. Niihara, K. N., Nakahira, A., Sasaki, G., Hirabayashi, M., Materials Resarch Society, Japan, v. 4 p. 129–34 (1989).Google Scholar
5. Niihara, K., J. Ceram. Soc. Jpn., v. 99 [10], p. 974982 (1991)Google Scholar
6. Jeong, Y. K., Nakahira, A., Morgan, P.E.D., Niihara, K., J. Am. Ceram. Soc., v. 80, p. 13071309 (1997).Google Scholar
7. Jeong, Y.k., Niihara, K., Nanostructured Materials, v.9, p.193196, (1997).Google Scholar
8. Zhao, J., Stearns, L.C., Harmer, M.P., Chan, H. M., Meller, G.A., Cook, R. C., J. Am. Ceram. Soc., v. 76(2), p. 503510 (1993).Google Scholar
9. Hahan, H., Padmanabhan, K.A. Nanostructured Materials v.6, p.191200 (1995).Google Scholar
10. Davidge, R. W., Brook, R. J., Cambier, F., Poortman, M., Leriche, A., O’Sullivan, D., Hampshire, S., Kennedy, T., Br. Ceram. Trans. v.96 p. 121127(1997).Google Scholar
11. Carroll, L., Sternitzke, M., Derby, B., Acta Mater. v.44, p. 45434552 (1996).Google Scholar
12. Brook, R. J., Mackenzie, R. A. D., Composite Materials, p.2730 (1993).Google Scholar
13. Anya, C. C. A., Ceramic International, v.26, p. 427434 (2000).Google Scholar
14. Ferroni, L.P., Pezzotti, G., J. Am. Ceram. Soc, v. 85[8] 2033-2038 (2002).Google Scholar
15. Chinelatto, A. S. A., Manosso, M. K., Pallone, E. M. J. A., Souza, A. M., Chinelatto, A.L., Advances in Science and Technology Vol. 62, pp 221226(2010)Google Scholar