Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T21:43:10.095Z Has data issue: false hasContentIssue false

Occupied and Unoccupied Orbitals of C60 and C70 Probed with C 1s Emission and Absorption

Published online by Cambridge University Press:  22 February 2011

J. A. Carlisle
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
L. J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
E. A. Hudson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
E.L. Shirley
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
F. J. Himpsel
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
J. J. Jia
Affiliation:
University of Tennessee, Knoxville, TN 37996
T. A. Callcott
Affiliation:
University of Tennessee, Knoxville, TN 37996
R. C. C. Perera
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
S. G. Louie
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J. StÖhr
Affiliation:
Department of Physics, U.C. Berkeley, CA 94720
M. G. Samant
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. L. Ederer
Affiliation:
Tulane University, New Orleans, LA, 70118
Get access

Abstract

The full spectrum of occupied and unoccupied σ and Π orbitals is presented for solid C60, C70, and graphite, using C1s emission and absorption spectroscopy. There are significant differences between C60 and C70, and even larger changes relative to their infinite analog graphite C∞. A comparison is made with photoemission and inverse photoemission results, along with first principles quasiparticle calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weaver, J.H., J. Phys. Chem. Solids 53, 1433 (1992).Google Scholar
[2] Briihwiler, P.A., Maxwell, A.J., Nilsson, A., Whetten, R.L., and Mèrtensson, N., Chem. Phys. Lett. 193, 311 (1992).Google Scholar
[3] Takahashi, T., Suzuki, S., Morikawa, T., Katayama-Yoshida, H., Hasegawa, S., Inokuchi, H., Seki, K., Kikuchi, K., Suzuki, S., Ikemoto, K., and Achiba, Y., Phys. Rev. Lett. 68, 1232 (1992).Google Scholar
[4] Terminello, L.J., Shuh, D.K., Himpsel, F.J., Lapiano-Smith, D.A., Stöhr, J., Bethune, D.S., and Meijer, G., Chem. Phys. Lett. 182, 491 (1991).Google Scholar
[5] Glans, Peter, PhD thesis, Uppsala University (1993).Google Scholar
[6] Wiech, G., in: Inner-Shell and X-Ray Physics of Atoms and Solids, ed. by Fabian, D.J., Kleinpoppen, H., and Watson, L.W., Plenum (New York 1981), p. 815. These graphite data have been used to calibrate the photon energy in our emission spectrograph. Using Ref. 5 as calibration our energies for the emission spectra would be about 1 eV higher.Google Scholar
[7] Shirley, E.L. and Louie, S.G., Phys. Rev. Lett. 71, 133 (1993).Google Scholar
[8] Trouillier, N. and Martins, J.L., Phys. Rev. B 46, 1754 (1992).Google Scholar
[9] Haddon, R.C., Science 261, 1545 (1993).Google Scholar
[10] Burstein, E., Erwin, S.C., Jiang, M.Y., and Messmer, R.P., Physica Scripta T42, 207 (1992).Google Scholar