Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T13:53:55.089Z Has data issue: false hasContentIssue false

Optical Absorption of the Isolated AsGa Antisite and AnEL2 - Like Defect in neutron-Transmutation Doped GaAs.

Published online by Cambridge University Press:  28 February 2011

M. O. Manasreh
Affiliation:
Air Force Wright Aeronautical Laboratories, Materials Laboratory (AFWAL/MLPO), Wright - Patterson Air Force Base, Ohio 45433 - 6533
D. W. Fischer
Affiliation:
Air Force Wright Aeronautical Laboratories, Materials Laboratory (AFWAL/MLPO), Wright - Patterson Air Force Base, Ohio 45433 - 6533
Get access

Abstract

The infrared (IR) absorption technique concurrent with thermal annealing was used to study the isolated AsGa antisite and an EL2-like defect in thermal neutron irradiated GaAs samples grown by the liquid-encapsulated Czochralski (LEC) technique. The residual absorption (unquenchable component) of the IR absorpion spectrum, after EL2 is completely photoquenched, is interpreted as the photoionization of the isolated ASGa antisite. This interpretation is supported by thermal annealing results at 600 C and by the increase of the unquenchable component as the irradiation dose is increased. A thermally unstable EL2-like defect is observed in heavily irradiated GaAs samples after 6 min annealing at 600 C. Thermal annealing kinetics show that the EL2-like defect is composed of three point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Martin, G. M. and Makram-Ebeid, S., in Deep Centers in Semiconductors, edited by Pantelides, S. T. (Gordon and Breach, New York, 1986), p. 399.Google Scholar
2. Gatos, H. C. and Lagowski, J., in Microscopic Identification of Electronic Defects in Semiconductors. edited by Johnson, N. M., Bishop, S. G., and Watkins, G. D. (Materials Research Society, Pittsburgh, 1985), vol. 46, p. 153.Google Scholar
3. Lagowski, J., Gatos, H. C., Parsey, J. M., Wada, K., Kaminska, M., and Walukiewicz, W., Appl. Phys. Lett. 40, 342 (1982).Google Scholar
4. Weber, E. R., Ennon, H., Kaufmann, U., Windschief, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).Google Scholar
5. Baeumler, M., Kaufmann, U., and Windscheif, J., Appl. Phys. Lett. 46, 781 (1985).Google Scholar
6. Manasreh, M. O., McDonald, P. F., Kivlighn, S. A., Minton, J. T., and Covington, B. C., Solid State Commun. 65, 1267 (1988).Google Scholar
7. Womer, R., Kaufmann, U., and Schneider, J., Appl. Phys. Lett. 40, 141 (1982).Google Scholar
8. Schneider, J. and Kaufmann, U., Solid State Commun. 44, 285 (1982).Google Scholar
9. Bardeleben, H. J. von, Stievenard, D., Deresmes, D., Huber, A., and Bourgoin, J. C., Phys. Rev. B34, 7192 (1986).Google Scholar
10. Weber, E. R. and Schneider, J., Physica 116B, 398 (1983).Google Scholar
11. Bachelet, G. B. and Scheffler, M., in Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by Chadi, J. D. and Harrison, W. A. (Springer-Verlag, New York, 1984), p. 755.Google Scholar
12. Baraff, G. A. and Schluter, M., Phys. Rev. Lett. 55, 2340 (1985).Google Scholar
13. Figielski, T., Kaczmarek, E., and Wosinski, T., Appl. Phys. A38, 253 (1985).Google Scholar
14. Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar
15. Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 60, 2187 (1988).Google Scholar
16. Meyer, B. K., Hofmann, D. M., Niklas, J. R., and Spaeth, J.-M., Phys. Rev. B36, 1332 (1987).Google Scholar
17. Levinson, M. and Kafalas, J. A., Phys. Rev. B35, 9383 (1987).Google Scholar
18. Culbertson, J. C., Strom, U., and Wolf, S. A., Phys. Rev. B36, 2962 (1987).Google Scholar
19. Manasreh, M. O., Fischer, D. W., and Covington, B. C., Phys. Rev. B37, 6567 (1988).Google Scholar
20. Parker, J. C. and Bray, R., Phys. Rev. B37, 6368 (1988).Google Scholar
21. Fischer, D. W., Phys. Rev. B37, 2968 (1988).Google Scholar
22. Mochizuki, Y. and Ikoma, T., Phys. Rev. Lett. 59, 590 (1987).Google Scholar
23. Martin, G. M., Appl. Phys. lett. 39, 747 (1981).Google Scholar
24. Martin, G. M., Esteve, E., Langlade, P., and Makram-Ebeid, S., J. Appl. Phys. 56, 2655 (1984).Google Scholar
25. Magno, R., Spencer, M., Geissner, J. G., and Weber, E. R., J. Electron. Mater. 14a, 981 (1985).Google Scholar
26. Barnes, C. E., Zipperian, T. E., and Dawson, L. R., J. Electron. Mater. 14, 95 (1985).Google Scholar
27. Suezawa, M. and Sumino, K., Phys. Stat. Sol. (a) 82, 235 (1984); Jpn. J. Appl. Phys. 27, L18 (1988).CrossRefGoogle Scholar
28. Kaminska, M., Skowronski, M., and Kusko, W., Phys. Rev. Lett. 55, 2204 (1985).Google Scholar
29. Figielski, T. and Wosinski, T., Phys. Rev. B36, 1269 (1987); T. Figielski, Mater. Sci. Forum 10-12, 341 (1986).Google Scholar
30. Baraff, G. A. and Lannoo, M., Rev. Phys. Appl. 23, 817 (1988).Google Scholar
31. Baraff, G. A., Lannoo, M., and Schluter, M., Phys. Rev. B38, 6003 (1988).Google Scholar
32. Wager, J. F. and Vechten, J. A. Van, Phys. Rev. B35, 2330 (1987).Google Scholar
33. Wang, G., Zou, Y., Benakki, S., Goltzene, A., and Schwab, C., J. Appl. Phys. 63, 2595 (1988)Google Scholar