Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T05:43:23.351Z Has data issue: false hasContentIssue false

Optical, Electrical and Microstructural Properties of Tin Doped Indium Oxide Films made from Sintered Nanoparticles

Published online by Cambridge University Press:  15 March 2011

Annette Hultåker*
Affiliation:
Department of Materials Science, The Ångström Laboratory, Uppsala University, P O Box 534, SE-751 21 Uppsala, Sweden
Anders Hoel
Affiliation:
Department of Materials Science, The Ångström Laboratory, Uppsala University, P O Box 534, SE-751 21 Uppsala, Sweden
Claes-Göran Granqvist
Affiliation:
Department of Materials Science, The Ångström Laboratory, Uppsala University, P O Box 534, SE-751 21 Uppsala, Sweden
Arie van Doorn
Affiliation:
Philips CFT, PO Box 218, 5600 MD Eindhoven, The Netherlands
Michel J. Jongerius
Affiliation:
Philips CFT, PO Box 218, 5600 MD Eindhoven, The Netherlands
Detlef Burgard
Affiliation:
Nanogate GmbH, Gewerbepark Eschberger Weg, 66121 Saarbrücken, Germany
*
Corresponding author: Phone: +46 18 471 31 32, Fax: +46 18 500 131, E-mail: Annette.Hultaker@Angstrom.uu.se
Get access

Abstract

Thin transparent and electrically conductive films of tin doped indium oxide (ITO) were made by sintering of nanoparticle dispersions. The resistivity decreased to 1–10-2 μcm upon treatment at 800°C, while the luminous transmittance remained high. The property evolution was connected with sintering and densification as studied by Scanning Electron Microscopy, X-ray Diffraction, X-ray Fluorescence and Elastic Recoil Detection Analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gordon, R. G., MRS Bull. 25, 5257 (2000).Google Scholar
2. Toney, M. F., in Encyclopedia of Materials Characterization, edited by Brundle, C. R., Evans, C. A. Jr, Wilson, S. and Fitzpatrick, L. E., (Butterworth-Heinemann and Manning Publ. Co., Stoneham and Greenwich, 1992) pp. 207208.Google Scholar
3. Zhang, Y., Whitlow, H. J., Winzell, T., Bubb, I. F., Sajavaara, T., Arstila, K. and Keinonen, J., Nucl. Instr. Meth. B 149, 477489 (1999).Google Scholar
4. Huang, T. C., in Encyclopedia of Materials Characterization, edited by Brundle, C. R., Evans, C. A. Jr, Wilson, S. and Fitzpatrick, L. E., (Butterworth-Heinemann and Manning Publ. Co., Stoneham and Greewich, 1992) pp. 338348.Google Scholar
5. Mayo, M. J., Int. Mat. Rev. 41, 85115 (1996).Google Scholar
6. Liu, J., Rädlein, E. and Frischat, G. H., Phys. Chem. Glasses 40, 277281 (1999).Google Scholar
7. Wei, Q., Zheng, H. and Huang, Y., Sol. Energy Mater. Sol. Cells 68, 383390 (2001).Google Scholar
8. Minami, T., Yamamoto, T., Toda, Y. and Miyata, T., Thin Solid Films 373, 189194 (2000).Google Scholar
9. Suzuki, A., Matsushita, T., Aoki, T., Yoneyama, Y. and Okuda, M., Jpn. J. Appl. Phys. 40, L401–L403 (2001).Google Scholar