Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T12:44:36.421Z Has data issue: false hasContentIssue false

Optical Study of the Fe3+-Related Emission at 0.5 eV in InP:Fe

Published online by Cambridge University Press:  03 September 2012

Klaus Pressel
Affiliation:
4. Physikal. Inst., Univ. Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80
G. Bohnert
Affiliation:
4. Physikal. Inst., Univ. Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80
A. Dörnen
Affiliation:
4. Physikal. Inst., Univ. Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80
K. Thonke
Affiliation:
Abteilung Halbleiterphysik, Univ. Ulm, Postfach 4066, D-7900 Ulm
Get access

Abstract

The 0.5 eV (2.5 μm 4000 cm1) emission band in InP has been studied by optical spectroscopy. By the use of Fourier-transform-infrared photoluminescence we have been able to observe at least a three-fold fine structure in the zero-phonon transitions at ∼ 4300 cm−1 which are studied at different temperatures. Based on the fine structure and the long decay time of 1.1 ms we ascribe the 0.5 eV emission to the 4T16A1 spin-flip transition of Fe3+. The excitation spectrum of this Fe3+-related emission shows a characteristic fine structure at ∼ 1.13 eV which belongs to a charge-transfer process of the type: Fe3+ + hv (1.13 eV) → [Fe2+, bound hole]. We discuss the excitation mechanism of the 0.5 eV emission by charge-transfer states and compare the results with an emission at 3057 cm1 in GaAs, which we attribute to the same Fe3+ transition (decay time: 1.9 ms).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] for an overview see: Bishop, S. G., in ‘Deep Centers in Semiconductors’, ed.: Pantelides, S., Gordon & Breach, N.Y. 1985, p. 541.Google Scholar
[2] Tapster, P. R., Skolnick, M. S., Humphreys, R. G., Dean, P. J., Cockayne, B., and MacEwan, W. R., J. Phys. C: Solid State Phys., 14, 5069 (1981).CrossRefGoogle Scholar
[3] Leyral, P., Bremond, G., Nouailhat, A., and Guillot, G., J. Lumin., 24/25, 245 (1981).Google Scholar
[4] Deveaud, B., Guillot, G., Leyral, P., Benjeddou, C., Nouailhat, A., and Lambert, B., in Proc. of the 4th Conf. on Semi-insulating Materiah, Kah-nee'ta, 1983, ed. by Look, D.C. and Blakemore, J.S. (Shiva, 1984, Nantwich), p. 493.Google Scholar
[5] Pressel, K., Bohnert, G., Dörnen, A., Thonke, K., unpublished.Google Scholar
[6] Thonke, K. and Pressel, K., Phys. Rev. B, 44, 13418 (1991).Google Scholar
[7] Koidl, P., Phys. Stat. Solidi (b), 74, 477 (1976).Google Scholar
[8] Vink, A. T. and Van Gorkom, G. G. P., J. Lumin. 5, 379 (1972).Google Scholar
[9] Zigone, M., Besermann, R., and Lambert, B., J. Lumin. 9, 45 (1974).CrossRefGoogle Scholar
[10] Hoffmann, A., Heitz, R., and Broser, I., Phys. Rev. B 41, 5806 (1990).Google Scholar
[11] Pressel, K., Bohnert, G., Riickert, G., Thonke, K., and Dornen, A., will be published in the Journal of Applied Phys. 71, June (1992)Google Scholar
[12] Pressel, K., Rücken, G., Thonke, K., and Dornen, A., in ‘Proc. of the 16th Int. Conf. on Defects in Semiconductors’, Bethlehem, U.S.A. edited by Davies, G., DeLeo, G. and Stavola, M., (Trans Tech Publ., Aedermannsdorf, Switzerland, 1992), p. 695.Google Scholar