Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:43:48.541Z Has data issue: false hasContentIssue false

Optical Switching in Thin Film NdNiO3

Published online by Cambridge University Press:  03 September 2012

J. F. DeNatale
Affiliation:
Rockwell Science Center, Thousand Oaks, CA 91360
P. H. Kobrin
Affiliation:
Rockwell Science Center, Thousand Oaks, CA 91360
Get access

Abstract

Crystalline thin films of NdNiO3 are known to exhibit characteristic metal-insulator electrical transitions. Infrared transmission measurements of these films have demonstrated the corresponding reversible optical switching response, transforming between IR-transparent and IR-opaque states. Their low-temperature transmission spectra exhibit a sharp increase in transmittance at an onset wavelength of approximately 3 mm (˜0.4eV), with an appearance suggesting formation of a distinct band gap structure. The transmission and reflection characteristics of these films differ significantly from those reported for bulk polycrystalline material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Torrance, J.B., Lacorre, P., Nazzal, A.I, Ansaldo, E.J., and Niedermayer, Ch., Phys. Rev. B 45(14), p.8209 (1992).Google Scholar
2. Canfield, P.C., Thompson, J.D., Cheong, S.W., and Rupp, L.W., Phys. Rev. B 47(18), p.12357 (1993).Google Scholar
3. Lacorre, P., Torrance, J.B., Pannetier, J., Nazzal, A.I., Wang, P., and Huang, T.C., J. Solid State Chem. 91, p.225 (1991).Google Scholar
4. Granados, X., Fontcuberta, J., Obradors, X., Manosa, LI., and Torrance, J.B., Phys. Rev. B. 48(16), p. 11666 (1993).Google Scholar
5. Garcia-Munoz, J. L., Rodriguez-Carvajal, J., and Lacorre, P., Phys Rev. B 50(2), p. 978 (1994).Google Scholar
6. Garcia-Munoz, J.L., Rodriguez-Carvajal, J., Lacorre, P., and Torrance, J.B., Phys Rev. B. 46(8), p. 4414 (1992).Google Scholar
7. Garcia-Munoz, J.L., Rodriguez-Carvajal, J., and Lacorre, P., Physica B 180/181, p.306 (1992).Google Scholar
8. Zaanen, J., Sawatzky, G.A., and Allen, J.W., Phys Rev. Lett. 55 (4), p.418 (1985).Google Scholar
9. Zaanen, J. and Sawatzky, G.A., J. Solid State Chem. 88, p.8 (1990).Google Scholar
10. Torrance, J.B., Lacorre, P., Asavaroengchai, C., and Metzger, R.M., Physica C 182, p. 351 (1991).Google Scholar
11. DeNatale, J.F. and Kobrin, P.H., J. Mater. Res. 10(12),p.2992 (1995).Google Scholar
12. Wittlin, A. et al., Physica C 235–240, p. 1289 (1994).Google Scholar
13. Katsufuji, T. et al., Phys. Rev. B 51(8), p. 4830 (1995).Google Scholar
14. Geller, S. and Bala, V.B., Acta Crys. 9, p. 1019 (1956).Google Scholar
15. Beesabathina, D.P., Saamanca-Riba, L., Mao, S.N., Xi, X.X., Venkatesan, T., and Wu, X.D., J. Mater. Res. 9(6), p. 1376 (1994).Google Scholar
16. Vassiliou, J.K., Hombostel, M., Ziebarth, R., and Disalvo, F.J., J. Solid State Chem. 81, p.208 (1989).Google Scholar
17. Seifert, A et al. J. Mater. Res. 11(6), p. 1470 (1996).Google Scholar
18. Grosse, P. and Offermann, V., Appl. Phys. A 52, p. 138 (1991).Google Scholar