Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T06:01:48.875Z Has data issue: false hasContentIssue false

Optimization of a Dual-Mode RF / Microwave Plasma for Amorphous thin film Deposition

Published online by Cambridge University Press:  16 February 2011

R. Etemadi
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UPR 0258 CNRS), Ecole Polytechnique, 91128 Palaiseau-Cedex, France
O. Leroy
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UPR 0258 CNRS), Ecole Polytechnique, 91128 Palaiseau-Cedex, France
B. Drevillon
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UPR 0258 CNRS), Ecole Polytechnique, 91128 Palaiseau-Cedex, France
C. Godet
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UPR 0258 CNRS), Ecole Polytechnique, 91128 Palaiseau-Cedex, France
Get access

Abstract

A new dual-plasma (surface wave-coupled microwave and capacitively-coupled radiofrequency) PECVD reactor for high growth rate of Amorphous insulating alloys is being developped. A high flexibility for thin film materials synthesis is expected, because the energy of the ion bombardment can be monitored independently from the microwave plasma chemistry. In situ diagnostics (Optical EMission Spectroscopy and Spectroscopie Ellipsometry) are used for the optimization of the dual-Mode plasma deposition of hydrogenated Amorphous silicon a-Si:H and silicon oxides a-SiOx:H (with 0 ≤ × ≤ 2). The growth of stoichiometric oxide at 3.3 nm / s has been achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moisan, M., Barbeau, C., Claude, R., Ferreira, C.M., Margot, J., Paraszczak, J., Sa, A.B., Sauvé, G. and Wertheimer, M.R., J. Vac. Sci. Technol. B 9 (1991) 8.CrossRefGoogle Scholar
2. Ferreira, C.M., Alves, L.L., Pinheiro, M. and Sa, A.B., IEEE Trans. Plasma Science 19, 229 (1991).CrossRefGoogle Scholar
3. Klemberg-Sapieha, J.E., Küttel, O.M., Martinu, L. and Wertheimer, M.R., Thin Solid Films 193, 965 (1990).CrossRefGoogle Scholar
4. Buckle, K.A., Pastor, K., Constantine, C. and Johnson, D., J. Vac. Sci. Technol. B 10, 1133 (1992).CrossRefGoogle Scholar
5. Rostaing, J.C., Coeuret, F., Drévillon, B., Etemadi, R., Godet, C., Hue, J., Parey, J.Y. and Yakovlev, V.A., Thin Solid Films 236, 58 (1993).CrossRefGoogle Scholar
6. Etemadi, R. et al. Submitted to J. Vac. Sci. Technol. A (unpublished).Google Scholar
7. Etemadi, R., Godet, C., Leroy, O., Morin, P. and Drévillon, B., 12th Photovoltaic Solar Energy Conference (Amsterdam, April 11–15 1994) (unpublished).Google Scholar
8. Kushner, M.J., J. Appl. Phys. 74, 6538 (1993).CrossRefGoogle Scholar