Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T11:53:14.089Z Has data issue: false hasContentIssue false

Optimization of Pulsed Annealing Techniques for GaAs Integrated Circuits

Published online by Cambridge University Press:  15 February 2011

G.M. Martin
Affiliation:
Laboratoires d'Electronique et de Physique Appliquee, 3, Avenue Descartes, 94450 Limeil-Brevannes (France),
A Mitonneau
Affiliation:
Laboratoires d'Electronique et de Physique Appliquee, 3, Avenue Descartes, 94450 Limeil-Brevannes (France),
M. Cathelin
Affiliation:
Laboratoires d'Electronique et de Physique Appliquee, 3, Avenue Descartes, 94450 Limeil-Brevannes (France),
S. Makram-Ebeid
Affiliation:
Laboratoires d'Electronique et de Physique Appliquee, 3, Avenue Descartes, 94450 Limeil-Brevannes (France),
C. Venger
Affiliation:
Laboratoires d'Electronique et de Physique Appliquee, 3, Avenue Descartes, 94450 Limeil-Brevannes (France),
D. Barbier
Affiliation:
L.P.M., INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)
A. Laugier
Affiliation:
L.P.M., INSA, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)
Get access

Abstract

Ohmic contacts on GaAs were realized by pulse annealing AuGe and AuGe-Ni layers deposited on top of n-type GaAs conducting layers. We used focused and largediameter YAG laser beam pulses (λ =1.06 µm), a large diameter Ruby laser beam pulse (λ = 0.69 µm) and a largediameter electron beam pulse. We tested the electrical quality of the contacts obtained. We also examined the compatibility of the alloying techniques used with theself-alignment technology for IC fabrication. In particular, we tested the quality of Al Schottky diodes and of the boron implanted insulating regions which coexist on the same IC with the ohmic contacts and are subject to the same pulse annealing treatment. The relative merit of the different pulse treatments are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barnes, P.A., Leamy, H.J., Poate, J.M., Ferris, S.D., Williams, J.S. and Cellar, G.K., Appl. Phys. Lett. 33. 965 (1978).Google Scholar
2. Mozzi, R.L., Fabian, W. and Pekarski, F.J., Appl. Phys. Lett. 35, 337 (1979).CrossRefGoogle Scholar
3. Inada, T., Kato, S., Hara, T. and Toyoda, N., J. Appl. Phys. 50, 4466 (1979).Google Scholar
4. Martin, G.M., Steers, M., Venger, C., Simondet, F. and Rigo, S., Proc. MRS Meeting, Nov. 1979, p. 360.Google Scholar
5. Woodcock, J.M. and Butler, H., Proc. of the Int. Conf. on Ion Beam Modification of Materials, Budapest (1978) p. 849.Google Scholar
6. Inada, T., Tokunagan, K., Taka, S., Appl. Phys. Lett. 35, 546 (1979).CrossRefGoogle Scholar
7. Tandon, J.L., Kirkpatrick, C.G., Welch, B.M. and Fleming, P., Proc. MRS Meeting, Nov. 1979, p. 487.CrossRefGoogle Scholar
8. Binet, M., Electron Lett. 11, 580 (1975).Google Scholar
9. Baudet, P., Binet, M. and Boccon-Gibod, D., IEEE Trans. on Micr. Th. and Tech., MTT 24, 372 (1976).CrossRefGoogle Scholar
10. Berger, H.H., J. Electrochem. Soc.: Solid-State Science and Technology, 119, 507 (1972).Google Scholar
11. Van Vechten, J.A., Proc. MRS Meeting, Nov. 1979, P. 53.Google Scholar