Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:58:53.634Z Has data issue: false hasContentIssue false

Organosoluble Silicon and Germanium Nanoclusters

Published online by Cambridge University Press:  15 March 2011

Akira Watanabe
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Tokuji Miyashita
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

The organosilicon nanoclusters (OSI) and organogermanium nanocluster (OGE) which have a few nanometer sized silicon or germanium cluster and organic groups bonded to the nanocluster surfaces show solubility in common organic solvents and good film processability by solution coating method. Using the coating films as precursors, inorganic silicon and germanium films were prepared by heat treatment in vacuo and laser annealing. The structural changes of the Si and Ge skeletons of the OSI and OGE by heat treatment and laser annealing were investigated by Raman spectroscopy. The laser-annealed films showed Raman bands assigned to the polycrystalline structure. The micropatterning of polycrystalline Ge by laser direct writing method was demonstrated. The organosoluble OGE is expected to be applicable as a germanium ink which gives polycrystalline Ge film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, A., Fujitsuka, M., Ito, O. and Miwa, T., Jpn. J. Appl. Phys 36, L1265 (1997).Google Scholar
2. Watanabe, A., Fujitsuka, M. and Ito, O., Thin Solid Films 354, 13 (1999).Google Scholar
3. Watanabe, A., Unno, M., Hojo, F. and Miwa, T., Jpn. J. Appl. Phys. 39, L961 (2000).Google Scholar
4. Watanabe, A., Unno, M., Hojo, F. and Miwa, T., Matterials Letters 47, 89 (2001).Google Scholar
5. Watanabe, A., Unno, M., Hojo, F. Miwa, T., J. Materials Sci. Lett. 20, 491 (2001).Google Scholar
6. Watanabe, A., Unno, M., Hojo, F. and Miwa, T., Chem. Lett. 1092 (2001).Google Scholar
7. Watanabe, A., Sato, T. and Matsuda, M., Jpn J. Appl. Phys. 40, 6457 (2001).Google Scholar
8. Watanabe, A., Hojo, F., Miwa, T. and Wakagi, M., Jpn. J. Appl. Phys. 41, L378 (2002).Google Scholar
9. Watanabe, A., Unno, M., Hojo, F. and Miwa, T., Chem. Lett. 662 (2002).Google Scholar
10. Watanabe, A., Unno, M., Hojo, F. and Miwa, T., Materials Lett. 57, 3043 (2003).Google Scholar
11. Watanabe, A., J. Organomettalic Chem. 685, 122 (2003).Google Scholar
12. Watanabe, A., Hojo, F. and Miwa, T., Appl. Organomet. Chem. 19, 530 (2005).Google Scholar
13. Shimoda, T., Matsuki, Y., Furusawa, M., Aoki, T., Yudasaka, I., Tanaka, H., Iwasawa, H., Wang, D., Miyasaka, M. and Takeuchi, Y., Nature 440, 783 (2006).Google Scholar
14. Pal, U., Serrano, J. Garci'a, Appl. Sur. Sci. 246, 23 (2005)..Google Scholar
15. Masini, G., Colace, L., Galluzzi, F., Assanto, G., Mat. Sci. Eng. B, 69–70 257 (2000).Google Scholar
16. Henderson, Eric J., Hessel, Colin M., and Veinot, Jonathan G. C., J. Am. Chem. Soc., 130, 3624 (2008)Google Scholar
17. Schwan, J., Ulrich, S., Batori, V., and Ehrhardt, H., Silva, S. R. P., J. Appl. Phys. 80, 440 (1996)Google Scholar