Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-23T13:17:27.959Z Has data issue: false hasContentIssue false

The Origin of Electrical Activity at Grain Boundaries in Perovskites and Related Materials

Published online by Cambridge University Press:  21 March 2011

S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235
M. Kim
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
G. Duscher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235
N. D. Browning
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
K. Sohlberg
Affiliation:
Department of Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
S. T. Pantelides
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235
Get access

Extract

In the last few years, the combination of atomic-resolution Z-contrast microscopy, electron energy loss spectroscopy and first-principles theory has proved to be a powerful means for structure property correlations in complex materials1. Here we demonstrate the effectiveness of this combined approach by demonstrating the origins of electrical activity at grain boundaries in the prototypical perovskite SrTiO3 and the high-temperature superconductor YBa2Cu3O7-x, materials that are closely related in structure. We show, both experimentally and theoretically, that grain boundaries in SrTiO3 are intrinsically non-stoichiometric. Electron energy-loss spectroscopy (EELS) provides direct evidence of non-stoichiometry, in agreement with total- energy calculations that predict non-stoichiometric grain boundaries to be energetically favorable. The predicted structures are consistent with atomic-resolution Z-contrast micrographs. These results provide a consistent explanation of the grain boundary charge that was previously inferred from electrical measurements, and provides a microscopic explanation of the resulting “double-Schottky barriers”. We also present experimental evidence for non-stoichiometry at grain boundaries in the high-temperature superconductor YBa2Cu3O7-x, where the same phenomenon explains the observed exponential reduction of critical currents with grain boundary misorientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pennycook, S. J., Chisholm, M. F., Yan, Y., Duscher, G., and Pantelides, S. T., Physica B 273, 453 (1999).Google Scholar
2 James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Elect. Micr. 47, 561 (1998).Google Scholar
3 Nellist, P. D. and Pennycook, S. J., Phys. Rev. Lett. 81, 4156 (1998).Google Scholar
4 Pennycook, S. J. and Nellist, P. D. In: Rickerby, D. G., Valdré, U. and Valdré, G. (eds.) Impact of Electron and Scanning Probe Microscopy on Materials Research, Kluwer Academic Publisers, The Netherlands, 161 (1999).Google Scholar
5 Nellist, P. D. and Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 113, 148 (2000).Google Scholar
6 McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).Google Scholar
7 Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J.-P., and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).Google Scholar
8 McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., and Pennycook, S. J., Ravikumar, V., and Dravid, V. P., Science 266, 102 (1994).Google Scholar
9 McGibbon, M. M., Browning, N. D., McGibbon, A. J., and Pennycook, S. J., Phil. Mag. A73, 625 (1996).Google Scholar
10 Browning, N. D., Pennycook, S. J., Chisholm, M. F., McGibbon, M. M. and McGibbon, A. J., Interface Science 2, 397 (1995).Google Scholar
11 Chisholm, M. F. and Pennycook, S. J.. Mater. Res. Soc. Bull. 22, 53 (1997)Google Scholar
12 Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
13 Duscher, G., Browning, N. D., and Pennycook, S. J., Phys. Stat. Sol. (a) 166, 327 (1998).Google Scholar
14 Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 132 (1998).Google Scholar
15 Yan, Y., Chisholm, M. F., Duscher, G., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 3675 (1998).Google Scholar
16 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1954).Google Scholar
17 Vanderbilt, D., Phys. Rev. B41, 7892 (1990).Google Scholar
18 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, 5188 (1976).Google Scholar
19 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phy., 63, 1045 (1992).Google Scholar
20 Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989).Google Scholar
21 Ceperley, D. M. and Alder, B. J., Phys.Rev.Letts, 45, 566 (1980).Google Scholar
22 Mo, S. D., Ching, W. Y., Chisholm, M. F., and Duscher, G., Phys. Rev B60, 2416 (1999).Google Scholar
23 Kimura, S., Yamauchi, J., and Tsukula, M., Phys. Rev. B51, 11049 (1995).Google Scholar
24 Taylor, W. E., Odell, N. H. and Fan, H. Y. Phys. Rev. B88, 867 (1952).Google Scholar
25 Waser, R., Solid State Ionics. 75, 89 (1995).Google Scholar
26 Kim, M., Duscher, G., Browning, N. D., Sohlberg, K., Pantelides, S. T. and Pennycook, S. J. Phys. Rev. Lett. (in press).Google Scholar
27 Dimos, D., Chaudhari, P., and Mannhart, J. Phys. Rev. B41, 4038 (1990).Google Scholar
28 Ivanov, Z. G., Nilsson, P. Å., Winkler, D., Alarco, J. A., Claeson, T., Stepantsov, A., and Tzalenchuk, A., Appl Phys Lett 59, 3030 (1991).Google Scholar
29 Browning, N. D., Chisholm, M. F., Norton, D. P., Lowndes, D. H. and Pennycook, S. J., Physica C 212, 185 (1993).Google Scholar
30 Browning, N. D., Yuan, J. and Brown, L. M., Physica C 202, 12 (1992).Google Scholar
31 Hilgenkamp, H. and Mannhart, J., Appl. Phys. Lett. 73, 265 (1998).Google Scholar
32 Chisholm, M. F. and Pennycook, S. J., Nature 351, 47 (1991).Google Scholar
33 Gurevich, A. and Pashitskii, E. A. Phys. Rev. B57, 13878 (1998).Google Scholar
34 Hilgenkamp, H., Mannhart, J. and Mayer, B., Phys. Rev. B53, 14586 (1997).Google Scholar
35 Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. and Urban, K, Nature 392, 768 (1998).Google Scholar
36 Krivanek, O. L., Delby, N. and Lupini, A., Ultramicroscopy, 78, 1 (1999).Google Scholar
37 Pennycook, S. J., Rafferty, B. and Nellist, P. D., Microsc. Microanal. 6, 34 (2000).Google Scholar