Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T17:00:26.659Z Has data issue: false hasContentIssue false

Oxidative Catalytic Decomposition of Toxic Gases Using Hydroxyapatite and Fluorhydroxyapatite

Published online by Cambridge University Press:  15 February 2011

Timothy P. Palucka
Affiliation:
University of Pittsburgh, Department of Materials Science and Engineering, 848 Benedum Engineering Hall, Pittsburgh, PA 15261
Nicholas G. Eror
Affiliation:
University of Pittsburgh, Department of Materials Science and Engineering, 848 Benedum Engineering Hall, Pittsburgh, PA 15261
Thomas A. Mcnamara
Affiliation:
University of Pittsburgh, Department of Materials Science and Engineering, 848 Benedum Engineering Hall, Pittsburgh, PA 15261
Get access

Abstract

An oxidative catalytic route for the decomposition of nerve gases was investigated using hydroxyapatite (HA, chemical composition Ca10(PO4)6(OH)2) and its partially fluorinated analog fluorhydroxyapatite (FHA, Ca10(PO4)6Fx(OH)2−x). Samples were prepared with surface areas ranging from 34 to 238 m2/g to study surface area effects; 1.2 wt. % platinum was deposited on one substrate to investigate the effect of a transition metal on activity and selectivity. Reaction studies were performed using dimethyl methylphosphonate (DMMP), a nerve gas simulant, in a stream of 80 percent nitrogen and 20 percent oxygen at 573 K and atmospheric pressure. High surface area FHA samples showed an increase in the "protection period" (period of 100% conversion) with increasing fluorine substitution; such an increase was not seen for low surface area FHA samples. In the absence of platinum, the reaction products were methanol and dimethyl ether; with platinum, CO2 was also obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, K Y., Houalla, M., Hercules, D. M., and Hall, W. K., J. Catal. 145, 223 (1994).Google Scholar
2. McNamara, T. A., MS Thesis, University of Pittsburgh, 1993.Google Scholar
3. Posuer, A. S., Perlofft, A. and Diorio, A. F., Acta. Cryst. 11, 308 (1958).Google Scholar
4. Imizu, Y., Kadoya, M., Abe, H., Itoh, H., and Tada, A., Chem. Lett., 415 (1982).Google Scholar
5. Kibby, C. L. and Hall, W. K., J. Catal. 29, 144 (1973).Google Scholar
6. Kibby, C. L., Lande, S. S., and Hall, W. K, J. Am. Chem. Soc. 94, 214 (1972).Google Scholar
7. Matsumura, Y., Moffat, J. B., Sugiyama, S., Hayashi, H., Shigemoto, N., and Saitoh, K., J. Chem. Soc. Faraday Trans. 90, 2133 (1994).Google Scholar
8. Schaeken, H. G., R Verbeeck, M. H., Driessens, F. C. M., and Thun, H. P., Bull. Soc. Chim Belg. 84, 881 (1975).Google Scholar
9. Henderson, M. A. and White, J. M., J. Am. Chem. Soc. 110, 6939 (1988).Google Scholar
10. Hedge, R-I., Greenlief, C. M. and White, J. M., J. Phys. Chem. 89, 2886 (1985).Google Scholar
11. Smentkowski, V. S., Hagans, P., and Yates, J. T. Jr., J. Phys. Chem. 92, 6351 (1988).Google Scholar
12. Henderson, M. A., Jin, T., and White, J. M., J. Phys. Chem. 90, 4607 (1986).Google Scholar
13. Templeton, M. K. and Weinberg, W. H., J. Am. Chem. Soc. 107, 97 (1985).Google Scholar
14. Hsu, C. C., Dulcey, C. S., Horwitz, J. S., and Lin, M. C., J. Mol. Catal. 60, 389 (1990).Google Scholar
15. Baier, R. W. and Weller, S. W., I&EC Proc. Des. and Dev. 6, 380 (1967).Google Scholar
16. Kuiper, A. E. T., Bokhoven, J. J. G. M. van, and Medema, J., J. Catal. 43, 154 (1976).Google Scholar
17. Graven, W. M., Weller, S. W., and Peters, D. L., I&EC Proc. Des. and Dev. 5, 183 (1966).Google Scholar
18. Maiti, G. C., Indian J. Chem. 29A, 402 (1990).Google Scholar
19. Duff, E. J. and Stuart, J. L., Anal. Chim. Acta. 52, 155 (1970).Google Scholar
20. Aoki, A. and Sakka, Y., J. Mining.and Mat. Inst. Japan 106, 861 (1990).Google Scholar