Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T12:10:33.018Z Has data issue: false hasContentIssue false

Oxygen Deficiencies at Defects in YBa2CU3O7-δ as Determined by High Resolution Parallel Electron Energy Loss

Published online by Cambridge University Press:  26 February 2011

M. J. Kramer
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011.
R. W. McCallum
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011.
Get access

Abstract

There has been considerable discussion on the exact nature of the pinning defects in the high temperature ceramic superconductors, and the YBa2Cu3O7-δ (Y123) structure in particular. High resolution parallel electron energy loss spectrometry (PEELS) allows for fine spatial resolution (< 17 nm) and fast acquisition times to probe the oxygen content of defects (i.e., dislocations, stacking faults, twin boundaries and grain boundaries), all which have been proposed as potential pinning sites or weak-links. Oxygen deficiencies up to 13% were measured at twin boundaries, and 20% at grain boundaries while stacking faults showed an increase in oxygen and copper content. Regions of low oxygen (0.5 < δ < 1) were usually confined to an area within approximately 50 nm of the defect, which is within the spatial resolution of the measurements. Examination of the fine structure of the oxygen K-edge suggests that the oxygen holes are absent at the twin and grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jorgenson, J. D., Hinks, D. G., Radaell, P. G., Pei, S., Lightfoot, P., Dabrowski, B., Serge, C. U. and Hunter, B. A., Physica C 185–189, 184 (1991).Google Scholar
2. Dimos, D., Chaudhari, P. and Mannhart, J., Phys. Rev. B 41, 4038 (1990).Google Scholar
3. Babcock, S. E., Cai, X. Y., Kaiser, D. L. and Larbalestier, D. C., Nature 347 167 (1990).Google Scholar
4. Zhu, Y., Zang, H., Wang, H. and Suenaga, M., J. Mater. Res. 6 2507 (1991).Google Scholar
5. Jou, C. J. and Washburn, J., J. Mater. Res. 4 795 (1989).Google Scholar
6. Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoot, K. G. and Liu, J. Z., Appl. Phys. Lett. 57 84 (1990).Google Scholar
7. Däumling, M., Seuntjens, J. and Larbalestier, D. C., Nature 346 332 (1990).Google Scholar
8. Egerton, R. F., Ultramicroscopy 28 215 (1989).Google Scholar
9. Batson, P. E. and Chisholm, M. F., Phys. Rev. B 37, 635 (1988).Google Scholar
10. Nucker, N., Fink, J., Fuggle, J. C., Durham, P. J. and Temmerman, W. M., Physica C 153–155, 119(1988).Google Scholar
11. Shindo, D., Hiraga, K., Hirabayashi, M., Kikuchi, M., Syono, Y., Furuno, S., Houjou, K., Sosa, T. and Otsu, H., J. Electron Microsc. 38 155 (1989).Google Scholar
12. Kirk, M. A., Baker, M. C., Liu, J. Z., Lam, D. J. and Weber, H. W., Mat. Res. Soc. Symp. Proc. 99 209 (1988).Google Scholar
13. Williams, D. B., Praticai Analytical Electron Microscopy in Materials Science (Philips Electronic Instruments Inc., Mahwah, New Jersey, 1984), p. 153.Google Scholar
14. Kramer, M. J., Chumbley, L. S., McCallum, R. W., Nellis, W. J. and Weir, S. and Kvam, E. P., Physica C, 166, 115 (1990).Google Scholar
15. Weir, S. T., Nellis, W. J., Kramer, M. J., Early, E. A., Seaman, C. L. and Maple, M. B. Appl. Phys. Lett. 59, 2042 (1990).Google Scholar
16. Kramer, M. J., Appl. Phys. Lett. 58, 1086 (1991).Google Scholar
17. Shi, D., Krishnan, H., hong, J. M., Miller, D., McGinn, P., Chen, W., Xu, M., Chen, J., Fang, M., Welp, U., Lanagan, M., Goretta, K., Dusek, J., Picciolo, J. and Balachandran, U., J. Appl. Phys. 68 228 (1990).Google Scholar
18. McGinn, P., Zhu, N., Chen, W., Sengupta, S. and Li, T., Physcia C 176 203 (1991).Google Scholar