Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T22:44:01.296Z Has data issue: false hasContentIssue false

Parallel and Complementary Detection of Proteins by p-type and n-type Silicon Nanowire Transistor Arrays

Published online by Cambridge University Press:  01 February 2011

Gengfeng Zheng
Affiliation:
gzheng@cml.harvard.edu, Harvard University, Chemistry and Chemical Biology, 12 Oxford Street, #111, Cambridge, MA, 02138, United States
Fernando Patolsky
Affiliation:
fernando@cmlris.harvard.edu
Charles M. Lieber
Affiliation:
cml@cmlris.harvard.edu
Get access

Abstract

Label-free, real-time, parallel and complementary electrical detection of proteins is demonstrated by p-type and n-type silicon nanowire field-effect transistors in the same arrays. Composed of hundreds of individually electrically addressable nanowire devices with highly sensitive and reproducible performances, these nanowire arrays can be controllably modified by monoclonal antibodies, and show discrete conductance changes characteristic of highly selective binding and unbinding of target proteins, such as prostate specific antigens (PSA), thus providing a general and powerful platform for high-throughput real-time parallel detection and rapid screening of libraries of biomolecules. Studies show that the PSA proteins can be routinely detected at femtomolar concentrations with high selectivity, and simultaneously incorporation of both p-type and n-type silicon nanowire devices enable discrimination against false positive/negative signals. The integrated complementary nanowire sensor arrays open up substantial opportunities for diagnosis and treatment of complex diseases such as cancer, detection of biological threats, and fundamental proteomic and biophysical studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tyers, M. & Mann, M., Nature 422, 193197 (2003).Google Scholar
2. MacBeath, G., Nat. Biotechnol. 19, 828829 (2001).Google Scholar
3. Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science 293, 1289 (2001).Google Scholar
4. Hahm, J., Lieber, C. M., Nano Lett. 4, 51 (2004).Google Scholar
5. Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W., Shim, M., Li, Y. M., Kim, W., Utz, P. J., Dai, H. J., Proc. Natl. Acad. Sci. 100, 4984 (2003).Google Scholar
6. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X. W., Wang, Q., Chang, Y. L., Dai, H. J., J. Am. Chem. Soc. 126, 1563 (2004).Google Scholar
7. Cui, Y., Zhong, Z., Wang, D., Wang, W. U., Lieber, C. M., Nano Lett. 3, 149 (2003).Google Scholar
8. Zheng, G., Lu, W., Jin, S., Lieber, C. M., Adv. Mater. 16, 18901893 (2004).Google Scholar
9. MacBeath, G., Schreiber, S. L., Science 289, 17601763 (2000).Google Scholar
10. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., Mirzabekov, A., Anal. Biochem. 278, 123131 (2000).Google Scholar
11. Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X. W., Lieber, C. M., Proc. Natl. Acad. Sci. 101, 1401714022 (2004).Google Scholar
12. Wang, W. U., Chen, C., Lin, K. H., Fang, Y., Lieber, C. M., Proc. Natl. Acad. Sci. 102, 32083212 (2005).Google Scholar
13. Shay, J. W., Bacchetti, S., Eur. J. Cancer 33, 787791 (1997).Google Scholar
14. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., Shay, J. W., Science 266, 20112015 (1994).Google Scholar
15. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., Lieber, C. M., Nat. Biotechnol. 23, 12941301 (2005).Google Scholar