Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T08:28:44.970Z Has data issue: false hasContentIssue false

Passivation of Interfaces in High-Efficiency Photovoltaic Devices

Published online by Cambridge University Press:  10 February 2011

Sarah R. Kurtz
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, Sarah_Kurtz@nrel.gov
J. M. Olson
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, Sarah_Kurtz@nrel.gov
D. J. Friedman
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, Sarah_Kurtz@nrel.gov
J. F. Geisz
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, Sarah_Kurtz@nrel.gov
K. A. Bertness
Affiliation:
NIST, 325 Broadway, Boulder, CO, 80303
A. E. Kibbler
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, Sarah_Kurtz@nrel.gov
Get access

Abstract

Solar cells made from III–V materials have achieved efficiencies greater than 30%. Effectively ideal passivation plays an important role in achieving these high efficiencies. Standard modeling techniques are applied to Ga0.5In0.5P solar cells to show the effects of passivation. Accurate knowledge of the absorption coefficient is essential (see appendix). Although ultralow (<2 cm/s) interface recombination velocities have been reported, in practice, it is difficult to achieve such low recombination velocities in solar cells because the doping levels are high and because of accidental incorporation of impurities and dopant diffusion. Examples are given of how dopant diffusion can both help and hinder interface passivation, and of how incorporation of oxygen or hydrogen can cause problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bertness, K. A., Kurtz, S. R., Friedman, D. J., Kibbler, A. E., Kramer, C., and Olson, J. M., Appl. Phys. Lett. 65, 989991 (1994).Google Scholar
2. Friedman, D. J., Kurtz, S. R., Bertness, K. A., Kibbler, A. E., Kramer, C., Olson, J. M., King, D. L., Hansen, B. R., and Snyder, J. K., Progress in Photovoltaics: Research and Applications 3, 4750 (1995).Google Scholar
3. Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M., Yamaguchi, M., and Yang, M. J., Jpn. J. Appl. Phys. 36, 62156220 (1997).Google Scholar
4. Y. Yeh, C. M., Ho, F. F. Chu, C. L., and Chiang, P. K., “Advance in Production of Cascade Solar Cells for Space,” in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997, 827830.Google Scholar
5. Cavicchi, B. T., Ermer, J. H., Krut, D. D., Joslin, D. E., Gillanders, M. S., and Zemmrich, D. K., “250,000 Watts of GaInP 2/GaAs/Ge Dual Junction Production,” in Proceedings of the 2nd World Conference on PV Energy Conversion, 1998, 35153519.Google Scholar
6. Olson, J. M., Ahrenkiel, R. K., Dunlavy, D. J., Keyes, B., and Kibbler, A. E., Appl. Phys. Lett. 55, 1208(1989).Google Scholar
7. Hovel, H. J., Solar Cells, (Academic Press, New York, 1975).Google Scholar
8. Fahrenbruch, A. L. and Bube, R. H., Fundamentals of Solar Cells Photovoltaic Solar Energy Conversion, (Academic Press, New York, 1983).Google Scholar
9. Kurtz, S. R., Faine, P., and Olson, J. M., J. Appl. Phys. 68 1890(1990).Google Scholar
10. Sze, S. M., Physics of Semiconductor Devices, (Wiley, New York, 1969).Google Scholar
11. Carpenter, M. S., Melloch, M. R., Lundstrom, M. S., and Tobin, S. P., Appl. Phys. Lett. 52, 21572159 (1988).Google Scholar
12. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50, 673(1987).Google Scholar
13. Kurtz, S. R., Olson, J. M., and Kibbler, A., Appl. Phys. Lett. 57, 19221924 (1990).Google Scholar
14. Klausmeier-Brown, M. E., Lundstrom, M. S., Melloch, M. R., and Tobin, S. P., Appl. Phys Lett. 52, 22552257 (1988).Google Scholar
15. Meehan, K., Dabkowski, F. P., Gavrilovic, P., Williams, J. E., Stutius, W., Shieh, K. C., and Holonyak, N., Appl. Phys. Lett. 54, 21362138 (1989).Google Scholar
16. Molenkamp, L. W. and van't Bilk, H. F. J., J. Appl. Phys. 64, 4253(1988).Google Scholar
17. King, R. R., Ermer, J. H., Joslin, D. E., Haddad, M., Eldredge, J. W., Karam, N. H., Keyes, B., and Ahrenkiel, R. K., “Double heterostructures for characterization of bulk lifetime and interface recombination velocity in HI-V multijunction solar cells,” in Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, 1998, 86.Google Scholar
18. Ahrenkiel, R. K., Olson, J. M., Dunlavy, D. J., Keyes, B. M., and Kibbler, A. E., Journal of Vacuum Science and Technology B 66 3002 (1990).Google Scholar
19. Nelson, R. J., J. Vac. Sci. Technol. 66 1475 (1978).Google Scholar
20. van Geelen, A., in Solar Cells of the III-V Compounds GaAs and GaInP2 , PhD thesis (1997).Google Scholar
21. Kurtz, S. R., Olson, J. M., Bertness, K. A., Sinha, K., McMahon, B., and Asher, S., “Hidden but important parameters in GaInP cell growth,” in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996, 3742.Google Scholar
22. Deppe, D. G., Appl. Phys. Lett. 56, 370372 (1990).Google Scholar
23. Kurtz, S. R., Olson, J. M., Friedman, D. J., and Reedy, R., “Effect of Front-Surface Doping on Back-Surface Passivation in GaInP Cells,” in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997, 819822.Google Scholar
24. Friedman, D. J., Kurtz, S. R., Kibbler, A. E., and Olson, J. M., “Back surface fields for GaInP2 solar cells,” in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, 1991, 358360.Google Scholar
25. Kato, H., Adachi, S., Nakanishi, H., and Ohtsuka, K., Jpn. J. Appl. Phys. 33, 186192 (1994).Google Scholar
26. Lee, K. H., Lee, S. G., and Chang, K. J., Phys. Rev. B. 52, 1586215866 (1995).Google Scholar
27. Kurtz, S. R., Arent, D. J., Bertness, K. A., and Olson, J. M., “The Effect of Phosphine Pressure on the Band Gap of Ga0 5In0.5P,” in Proceedings of the Compound Semiconductor Epitaxy, 1994, 117122.Google Scholar
28. S. Adachi (private communication).Google Scholar