Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T05:00:55.260Z Has data issue: false hasContentIssue false

Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly

Published online by Cambridge University Press:  01 February 2011

Vinod. K. Sangwan
Affiliation:
vinod_sag@yahoo.co.uk, University of Maryland (College Park), Department of Physics, 8309, 20th Avenue, Adelphi, MD, 20783, United States
D. R. Hines
Affiliation:
hines@lps.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
V. W. Ballarotto
Affiliation:
vince@lps.umd.edu, Laboratory for Physical Sciences, College Park, MD, 20740, United States
G. Esen
Affiliation:
gokhan@umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
M. S. Fuhrer
Affiliation:
mfuhrer@physics.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
E. D. Williams
Affiliation:
edw@physics.umd.edu, University of Maryland, Department of Physics, College Park, MD, 20742, United States
Get access

Abstract

Conditions for the transfer printing of patterned carbon nanotube (CNT) films, along with a Au-gate, a poly methylmethacrylate (PMMA) dielectric layer and Au source-drain electrodes have been developed for the fabrication of thin-film transistors on a polyethylene terephthalate (PET) substrate. Chemical vapor deposition (CVD) grown CNTs were patterned using a photolithographic method.

Transfer printing was used to fabricate devices having both top gate and bottom gate configurations. Replacement of the SiO2 dielectric with PMMA correlates with a decreased hysteresis in the transconductance behavior. Encapsulation of the CNTs between the polymeric substrate and dielectric layer yields ambipolar behavior. Variations in device performance are also observed as a function of CNT film density and channel length, suggesting changing contributions of the metallic and semiconducting CNTs to the transport mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
2 Bethune, D. S., Kiang, C. S., Varies, M. S. d., Gorman, G., Savoy, R., Vazquez, J. and Beyer, R., Nature 363, 605 (1993).Google Scholar
3 Li, S., Yu, Z., Yen, S.F., Tang, W. C. and Burke, P. J., Nano Lett. 4, 753 (2004).Google Scholar
4 Keren, K., Berman, R. S., Bushctab, E., Sivan, U. and Braun, E., Science 303, 1380 (2003).Google Scholar
5 Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S. and Cho, K. J., Nano Lett. 3, 347 (2003).Google Scholar
6 Lin, Y., Lu, F., Tu, Y. and Ren, Z., Nano Lett. 4, 191 (2004).10.1021/nl0347233Google Scholar
7 Durkop, T., Grtty, S. A., Cobas, E. and Fuhrer, M. S., Nano Lett. 4, 35 (2004).Google Scholar
8 Chen, Z., Appenzeller, J., Lin, M. Y., Oakley, J. S., Rinzler, A. G., Tang, J., Wind, S. J., Solomon, P. M. and Avouris, P., Science 311, 1735 (2006).Google Scholar
9 Hafner, J. H., Cheung, C.-L., Osterkamp, T. H. and Lieber, C. M., J. Phys. Chem. B 4, 743 (2001).Google Scholar
10 Ming, X., Huang, H., Caldwell, R., Huang, L., Jun, S. C., Huang, M., Sfeir, M. Y., O'Brien, S. and Hone, J., Nano Lett. 5, 1515 (2005).Google Scholar
11 Rao, S. G., Huang, L., Setyawan, W. and Hong, N. S., Nature 425, 36 (2003).Google Scholar
12 Lee, S. W., Lee, D. S., Yu, H. Y., Campbell, E. E. B. and Park, Y. W., Appl. Phys. A 78, 283 (2004).Google Scholar
13 Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
14 Snow, E. S., Novak, J. P., Campbell, P. M. and Park, D., Appl. Phys. Lett. 82, 2145 (2003).Google Scholar
15 Tselev, A., Hatton, K., Fuhrer, M. S., Paaranjape, M. and Barbara, P., Nanotechnology 15, 1475 (2004).Google Scholar
16 Hines, D. R., Mezhenny, S., Breban, M., Williams, E. D., Ballarotto, V. W., Esen, G., Southard, A. and Fuhrer, M. S., Appl. Phys. Lett. 86, 163101 (2005).Google Scholar
17 Hur, S.-H., Kocabas, C., Gaur, A., Park, O. O., Shim, M. and Rogers, J. A., J. Appl. Phys. 98, 114302 (2005).Google Scholar
18 Bradley, K., Gabriel, J.-C. P. and Gruner, G., Nano Lett. 3, 1353 (2003).Google Scholar
19 Hur, S.-H., Park, O. O. and Rogers, J. A., Appl. Phys. Lett. 86, 243502 (2005).Google Scholar
20 Gamota, D. R., Brazis, P., Kalyanasundaram, K. and Zhang, J., (Kluwer Academic Publishers, Boston, 2004).Google Scholar
21 Hines, D. R., Ballarotto, V. W., Williams, E. D., Shao, Y. and Solin, S. A., J. Appl. Phys.; in press (2007).Google Scholar
22 Kim, W., Choi, H.-C., Shim, M., Li, Y., Wang, D. and Dai, H., Nano Lett. 2, 703 (2002).Google Scholar
23 Fuhrer, M. S., Kim, B. M., Dürkop, T. and Brintlinger, T., Nano Lett. 2, 755 (2002).Google Scholar
24 Chen, Y.-F. and Fuhrer, M. S., Nano Lett. 6, 2158 (2006).Google Scholar
25 Kumar, S., Murthy, J. Y. and Alam, M. A., Physical Review Letters 95, 066802 (2005).Google Scholar