Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T21:05:31.878Z Has data issue: false hasContentIssue false

Peripheral Neve Regeneration in Vivo with Tubular Prostheses

Published online by Cambridge University Press:  26 February 2011

Roger Madison*
Affiliation:
Departments of Neuropathology and Neuroscience, Harvard Medical School and Children's Hospital, Boston, MA. 02115., Present Address: Division of Neurosurgery, Box 3807, Duke University Medical Center, Durham, NC 27710.
Get access

Abstract

We have developed a quantitative model which allows assessment of the number of primary motor and sensory neurons which regenerate an axon through a tubular prosthesis bridging a 4–5 mm gap of peripheral nerve (1). Labeled somas of motor and sensory neurons are quantified following retrograde transport of horseradish peroxidase (HRP) applied to the distal stump beyond the bridged transection site. The number of myelinated axons at mid-guide level is also quantified. We have studied biodegradable and nin-biodegradable materials as well as the effects on nerve regeneration of basement membrane materials, and specific proteins added to the nerve guide., Adding a laminin-oontaining gel (Matrigel, Collaborative Research, MA) to the lumen of polyethylene tubes increases the rate of nerve regeneration as well as the maximum distance that can be successfully bridged. Similar effects are seen with collagen-based nerve guides when the laminin-cxitaining gel is incorporated into the tube wall. Addition of highly purified acidic fibroblast growth factor (aFGF) to the lumen of polyethylene tubes filled with collagen significantly increases the number of myelinated axons at mid-tube level and the number of primary sensory neurons labeled with HRP.

We coxpared collagen-based nerve guides of different wall porosities. Tubes freely permeable to bovine serum albumin (BSA) contain significantly more myelinated axons (4 week survival) than identical collagen tubes permeable to glucose-size molecules. These and additional experiments demonstrate that manipulation of the extracellular microenvironment of regenerating PNS axons can significantly enhance the early regenerative response.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Madison, R.D. Da, Silva, C., Dikkes, P., Sidman, R.L., and Chiu, T-H. (1987) Exp. Neurol. 95: 378390.Google Scholar
2) Sunderland, S. (1978) Nerves and nerve injuries. Churchill Livingston, Inc., New York, N. Y., pp. 483650.Google Scholar
3) Daniel, R. K. and Terzis, J. T. (1977) Reconstructive Microsurgery, Little, Brown & Co., Boston, MA.Google Scholar
4) Brushart, T. M. and Mesulam, M. M. (1980) Science 208:603605.CrossRefGoogle Scholar
5) Brunelli, G., Monini, L., and Brunelli, F. (1985) Microsurg. 6:187198.Google Scholar
6) Weiss, P. (1944) J. Neurosurg. 1:400450.Google Scholar
7) Lundborg, G., Dahlin, L.B., Danielsen, N.P., Hansson, H.A. and Larsson, K. (1981) J. Neurosci. Res., 6, 265281.CrossRefGoogle Scholar
8) Lundborg, G., Longo, F.M. and Varon, S. (1982) Brain Res., 232, 157161.Google Scholar
9) Lundborg, G., Dahlin, L.B., Danielsen, N., Gelberman, R.H., Longo, F.M., Powell, B.C. and Varon, S. (1982) Exp. Neurol., 76, 361375.Google Scholar
10) Lundborg, G., Gelberman, R.H., Longo, F.M., Powell, H. C and Varon, S. (1982) J. Neuropath. Exp. Neurol., 41, 412422.Google Scholar
11) Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S. and Cotman, W. (1983) J. Neurosci., 3, 22192229.CrossRefGoogle Scholar
12) Molander, H., Engkvist, O., Haaglund, J., Olsson, Y. and Torebjork, E. (1983) Biomaterials, 4, 276280.Google Scholar
13) Restrepo, Y., Merle, M., Michon, J., Folliguet, B. and Petry, D. (1983) Microsurg., 4, 105112.Google Scholar
14) Rosen, J.M., Hentz, V.R. and Kaplan, E.N. (1983) Ann. Plastic Surg., 11, 397411.Google Scholar
15) Reid, R. L., Cutright, D. F., and Garrison, J. S. (1978) Hand, 10:259266.Google Scholar
16) Uzman, B. G. and Villegas, G. M. (1983) J. Neurosci. Res. 9:325338.CrossRefGoogle Scholar
17) Molander, H., Olsson, Y., Engkvist, O., Bowald, S., and Eriksson, I.. (1982) Mus. Ner. 5:5457.CrossRefGoogle Scholar
18) Noback, C. R., Husby, J., Giorado, J. M., Bassett, C. A. L., and Campbell, J. B. (1958) Anat. Rec. 131:633647.Google Scholar
19) Lehman, R. A. W., and Hayes, G. J. (1967) Brain 90:285296.CrossRefGoogle Scholar
20) Longo, F. M., Manthorpe, M., Skaper, S. D., Lundborg, G., and Varon, S. (1983) Brain Res. 261:109117.CrossRefGoogle Scholar
21) Longo, F.M., Skaper, S. D., Manthorpe, M., Williams, I. R., Lundborg, G., and Varon, S. (1983) Exp. Neurol. 81:756769.Google Scholar
22) Young, B. L., Begovac, P., Stuart, D. G., and Goslow, G. E. Jr (1984) J. Neurosci. Methods 10:5158.Google Scholar
23) Weiss, P., and Taylor, A. C. (1943) Arch. Surg., Chicago 47:419447.Google Scholar
24) Da Silva, C. F., Madison, R., Dikkes, P., Sidman, R. L., and Chiu, T.H. (1985) Brain Res. 342:307315.Google Scholar
25) Madison, R., da Silva, C.F., Dikkes, P., Sidman, R.L., and Chiu, T.-H. (1985) Exp. Neurol., 88(3):767772.Google Scholar
26) Madison, R. Sidman, R.L., Nyilas, E., Chiu, T.H. and Greatorex, D. (1984) Exp. Neurol., 86, 448461.Google Scholar
27) Nyilas, E., Chiu, T.H., Sidman, R.L., Henry, E.W., Brushart, T.M., Dikkes, P. and Madison, R. (1983) Trans. Am. Soc. Artif. Intern. Organs, 29, 307313.Google Scholar
28) Henry, L.W., Chiu, T.-H., Nyilas, E., Brushhart, T. M., Dikkes, P. and Sidman, R. L. (1985) Exp. Neurol. 90:652656.Google Scholar
29) Mesulam, M.M. (1978) J. Histochem. Cytochem., 26, 106117.CrossRefGoogle Scholar
30) Kleinman, H. K., McGarvey, M. L., Hassell, J. R., Star, V. L., Cannon, F. B., Laurie, G. W., and Martin, G. R. (1986) Biochem. 25:312318.Google Scholar
31) Cordeiro, P.G., Madison, R., and Seckel, B.R. (1987) Plast. Reccnstruc. Surg. Mtg.Google Scholar
32) Lipton, S.L., Wagner, J.A., Madison, R.D., and D'Amore, P.A. (1987) P.N.A.S., in press.Google Scholar
33) Danielsen, N., Dahlin, L. B., Lee, Y. F. and Lundborg, G.. (1983) Scand. J. Plast. Reconstr. Surg., 17, 119125.Google Scholar
34) Henry, F.W., Chiu, T. -H., Nyilas, E., Brushhart, T. M., Dikkes, P. and Sidman, H. L.. (1985) Exp. Neurol., 90, 652656.Google Scholar
35) Lunborg, G., Dahlin, L.B., Danielsen, N.P., Gelberman, P.H., Longo, F.M., Powell, H.C., and Varon, S. (1982) Exp. Neurol., 76, 361375.Google Scholar
36) Seckel, B. R., Chiu, T.-H., Nyilas, E., and Sidman, R. L. (1984) Plast. Reconstr. Surg., 74, 173181.Google Scholar
37) Madison, R., Da Silva, C.F., and Dikkes, P. (1985) Soc. Neurosci. Abst., 11, 367.7.Google Scholar
38) Madison, R., Da Silva, C.F., and Dikkes, P. (1987) Brain Res., in press.Google Scholar
39) Aebischer, P., Valentini, R.F., Winn, S.R., Kunz, S.K., and Galletti, P. M. (1986) Soc. Neurosci. Res., 190.9.Google Scholar
40) Jenq, C.B. and Coggeshall, R.E. (1987) Brain Res., in press.Google Scholar