Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T20:53:11.937Z Has data issue: false hasContentIssue false

Phase Stability in heavy f-Electron Metals from First-Principles Theory

Published online by Cambridge University Press:  26 February 2011

Per Söderlind*
Affiliation:
soderlind@llnl.gov, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
Get access

Abstract

The structural phase stability of heavy f-electron metals is studied by means of density-functional theory (DFT). These include temperature-induced transitions in plutonium metal as well as pressure-induced transitions in the trans-plutonium metals Am, Cm, Bk, and Cf. The early actinides (Th-Np) display phases that could be rather well understood from the competition of a crystal-symmetry breaking mechanism (Peierls distortion) of the 5f states and electrostatic forces, while for the trans-plutonium metals (Am-Cf) the ground-state structures are governed by 6d bonding. We show in this paper that new physics is needed to understand the phases of the actinides in the volume range of about 15-30 Å3. At these volumes one would expect, from theoretical arguments made in the past, to encounter highly complex crystal phases due to a Peierls distortion. Here we argue that the symmetry reduction associated with spin polarization can make higher symmetry phases competitive. Taking this into account, DFT is shown to describe the well-known phase diagram of plutonium and also the recently discovered complex and intriguing high-pressure phase diagrams of Am and Cm. The theory is further applied to investigate the behaviors of Bk and Cf under compression.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Söderlind, P., Adv. Phys. 47, 959 (1998).Google Scholar
2. Söderlind, P., Eriksson, O., Johansson, B., and Wills, J.M., and Boring, A.M., Nature (London) 374, 524 (1995).Google Scholar
3. Skriver, H.L., Phys. Rev. B 31, 1909 (1985);Google Scholar
Duthie, J.C. and Pettifor, D.G., Phys. Rev. Lett. 38, 564 (1977).Google Scholar
4. Söderlind, P. and Sadigh, B., Phys. Rev. Lett. 92, 185702 (2004).Google Scholar
5. Söderlind, P. and Landa, A., Phys. Rev. B 72, 024109 (2005);Google Scholar
Söderlind, P. et al. , Phys. Rev. B 61, 8119 (2000).Google Scholar
6. Ahuja, R., Söderlind, P., Trygg, J., Melsen, J., Wills, J.M., Johansson, B., and Eriksson, O., Phys. Rev. B 61, 8119 (2000).Google Scholar
7. Andersen, O.K., Phys. Rev. B 12, 3060 (1975);Google Scholar
Eriksson, O., Brooks, M.S.S., and Johansson, B., Phys. Rev. B 41, 9087 (1990);Google Scholar
Söderlind, P., Europhys. Lett. 55, 525 (2001).Google Scholar
8. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Phys. Rev. B 46, 6671 (1992).Google Scholar
9. Chadi, D.J. and Cohen, M.L., Phys. Rev. B 8, 5747 (1973);Google Scholar
Froyen, S., Phys. Rev. B 39, 3168 (1989).Google Scholar
10. Murnaghan, F.D., Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
11. Söderlind, P., Nordström, L., Yongming, L., and Johansson, B., Phys. Rev. B 42, 4544 (1990).Google Scholar
12. Heathman, S. et al. , Phys. Rev. Lett. 85, 2961 (2000);Google Scholar
Lindbaum, A. et al. , Phys. Rev. B 63, 214101 (2001).Google Scholar
13. Penicaud, M., J. Phys.: Condens. Matter 17, 257 (2005).Google Scholar
14. Heathman, S., Haire, R.G., Le Bihan, T., Lindbaum, A., Idiri, M., Normile, P., Li, S., Ahuja, R., Johansson, B., and Lander, G.H., Science 309, 110 (2005).Google Scholar
15. Kutepov, A.L. and Kutepova, S.G., J. Magn. Magn. Mat. 272–276, e329 (2004).Google Scholar
16. Milman, V., Winkler, N., and Pickard, C.J., J. Nucl. Mat. 322, 165 (2003).Google Scholar
17. Benedict, U. et al. , J. Phys. F: Met. Phys. 14, L43 (1984);Google Scholar
Itie, J.P. et al. , J. Phys. F: Met. Phys. 15, L213 (1985).Google Scholar