Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T15:45:30.740Z Has data issue: false hasContentIssue false

A Phenomenological Approach to the Ductility in Ultra-Fine Grain,Rapidly Solidified Materials

Published online by Cambridge University Press:  15 February 2011

M. A. Otooni*
Affiliation:
US Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000
Get access

Abstract

Crystallization in amorphous materials produces polycrystalline materials with fine grains which can be on the order of 1–2 microns, depending on the extent of annealing. Ductility in these materials with this range of grain sizes is generally low. This paper deals primarily with the lack of ductility in these classes of materials and will present a quasi-mathematical approach to this phenomenon. It will be shown that the influence of the plastic zone, the dislocation-free zone, and the grain size can be expressed by a unique formalism from which the propagation of cracks, and the lack of ductility, can be readily predicted. These deductions will become evident from the results of recent simulation experiments which will provide evidence to support the most essential elements of the approach presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, H.S. and Turnbull, D., J. Chem. Phys. 48, 25602571, (1968).Google Scholar
2. Kimura, H., Murata, T. and Masumoto, T., Sci. Rep. Inst. Tohoku U, Ser. A. 26 (4–5), (1977).Google Scholar
3. Taub, A.I., Rapidly Quenched Materials, Vol.2, edited by Steeb, and Warliment, , North Holland, Amsterdam, (1985).Google Scholar
4. Spaepen, F. and Turnbull, D., Scripta, Metal. 8, 563568, (1974).Google Scholar
5. Spaepen, F., Acta. Metal. 33, 615620, (1975).Google Scholar
6. Leamy, H.S., Chen, H.S. and Wang, T.T., Met. Trans., AIME, 3, 699, (1971).Google Scholar
7. Mullin, W.W. and Sekerka, R.F., J. Appl. Phys. 34, 323, (1963).Google Scholar
8. Vianco, P.T. and Li, J.C.M., Jour. Mat. Sci. 22, 31293138, (1987).Google Scholar
9. Merk, N., Morris, D.G., and Morris, M.A., Jour. Mat. Sci. and Eng. 97, 279283, (1988).Google Scholar
10. Masumoto, T. and Maddin, R., Acta. Met. 19, 725, (1971).Google Scholar
11. Marsh, D.M., Proc. R. Soc. A, 282, 33, (1964).Google Scholar
12. Otooni, M.A., Int. Conference on Advanced Materials, Mat. Res. Society Conference, Tokyo, Japan, (1989).Google Scholar
13. Otooni, M.A., Proc. of XI Int. Cong. on Electron Microscopy, Kyoto, Japan, (1986) pp. 15491550.Google Scholar
14. Otooni, M. A., Proc. of Army Sci. Conf. West Point, NY, (1984) pp. 327345.Google Scholar
15. Grant, N.J., Met. Trans., 23A, 1083, (1992).Google Scholar
16. Ucok, I., Ando, T., and Grant, N.J., Mat. Sci. and Eng. 133A, 284 (1991).Google Scholar
17. Li, W.L. and Li, J.C.M., Phil. Mag., A, 59, No. 6., 12451261, (1989).Google Scholar
18. Bilby, B.A., Cottrell, A.H., and Swinden, K. H., Proc. R. Soc., A, pp. 278304, (1963).Google Scholar
19. Stonesifer, E.R. and Armstrong, R.W., Adv. in Research on the Strength and Fracture of Materials, Vol.2A, Phys. Metallurgy of Fracture, edited by Taplan, C.M.R., Oxford, Pergamon, (1977).Google Scholar
20. Majumdar, B.S., and Burns, S.J., Acta. Met. 29, 587, (1983).Google Scholar
21. Shiue, Sham Tsong and Lee, Sanboh, Phil. Mag., A, 61., No. 1., 8597, (1990).Google Scholar
22. Lung, C.W. and Wang, L., Phil. Mag. A. 50, 19, (1984).Google Scholar
23. Rice, J.R. and Thompson, R., Phil. Mag. 29, 29, (1974).Google Scholar
24. Shiue, S.T. and Lee, S., J. Appl. Phys. 64, 129, (1988).Google Scholar
25. Kwangsoo, N., Jour. Mat. Sci. Letters, No. 7, 260262, (1988).Google Scholar
26. Ashbey, M.F., Phil. Mag. 21, 399, (1970).Google Scholar
27. Hansen, N. and Ralph, B., Acta. Met. 34, 1955, (1986).Google Scholar
28. Eshbey, J.D., Frank, F.C. and Nabarro, F.R., Phil. Mag. 42, 351, (1951).Google Scholar
29. Li, J. M.C., Trans. Met. Soc. AIME, 227, 239, (1963).Google Scholar
30. Hall, E.O., Proc. R. Soc. B, 64, 747 (1951).Google Scholar
31. Petch, N.J., J. Iron and Steel Institute, 174, 25, (1953).Google Scholar
32. Conrad, H., Acta Met. 11, 75, (1963).Google Scholar
33. Shimanuki, Y. and Dai, H., Trans. Japan, Inst. of Metal. No. 16, 123, (1975).Google Scholar
34. Petch, N.J. and Armstrong, R.W., Acta. Met., 37, 2379–2285, (1989).Google Scholar
35. Petch, N.J. and Armstrong, R.W., Acta. Met. 38, No. 12, 26952700, (1990).Google Scholar
36. Armstrong, R.W., Eng. Fracture Mechanics, 28, No. 5/6, 529538 (1987).Google Scholar
37. Fan, Z., Tsakiropoulos, P., Smith, P.A., and Miodownik, A.P., Phil. Mag. A., 67, No. 2, 515531 (1994).Google Scholar
38. Armstrong, R.W., “Yield, Flow and Fracture of Polycrystals”, edited by Baker, T. N., London: Applied Science), 1, (1983).Google Scholar
39. Armstrong, R.W., Codd, I., Douthwaite, R.M., and Petch, N.J., Phil. Mag. 45, (1962).Google Scholar
40. Tolbert, S.H. and Alivisatos, A.P., Science, 265, 373376, (1994).Google Scholar
41. Fouad, S.S., Morsy, A.Y., Talaat, H.M., and EI-Tawab, M., Phys. Stat. Sol. (b), 183, 149, (1994).Google Scholar
42. Otooni, M. A. and Grant, N. J. The First Pacific rim, Int. Conf. On Advanced Materials and Processing, Proc. Beijing Conf. pp. 123, (1992).Google Scholar