Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T04:06:14.305Z Has data issue: false hasContentIssue false

Phenylation of Fullerene-C60

Published online by Cambridge University Press:  22 February 2011

Roger Taylor
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Anthony G. Avent
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Paul R. Birkett
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Jon C. Crane
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Adam D. Darwish
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
G. John Langley
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Harold W. Kroto
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
David R. M. Walton
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, UK
Get access

Abstract

C60 Cl6 can be phenylated and arylated to give derivatives of the type C60Ar5Cl, which may be readily converted to C60Ar5. The compounds C60Ar5 and various other phenylated derivatives have been isolated from the product of reaction of [60]fullerene with bromine/ferric chloride/benzene, and partially characterised.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taylor, R., Electrophilic Aromatic Substitution. (Wiley, Chichester, 1989), pp. 202203.Google Scholar
2. Hoke, S. H., Molstad, J., Payne, G. L., Kahr, B., Ben-Amotz, D., and Cooks, R. G., Rapid Comm. Mass Spectr. 5, 472 (1991).Google Scholar
3. Olah, G. A., Bucsi, I., Lambert, C., Aniszfeld, R., Trivedi, N. J., Sensharma, D. K., and Prakash, G. K. S., J. Am. Chem. Soc., 113, 9387 (1991).Google Scholar
4. Olah, G. A., Bucsi, I., Aniszfeld, R., and Prakash, G. K. S., Carbon, 30, 1203 (1992).Google Scholar
5. Darwish, A. D. and Taylor, R., unpublished work.Google Scholar
6. Pang, L. S. K. and Wilson, M. A., J Phys. Chem., 97 (1993) 6761.Google Scholar
7. Avent, A. G., Darwish, A. D., Heimbach, D. K., Kroto, H. W., Meidine, M. F., Parsons, J. P., Remars, C., Roers, R., Ohashi, O., Taylor, R., and Walton, D. R. M., J. Chem. Soc., Perkin Trans. 2, 1994, 15.Google Scholar
8. Taylor, R., Langley, G. J., Meidine, M. F., Parsons, J. P., Abdul-Sada, A. K., Dennis, T. J., Hare, J. P., Kroto, H. W., and Walton, D. R. M., J. Chem. Soc., Chem. Commun., 1992 667.Google Scholar
9. Birkett, P. R., Hitchcock, P. B., Kroto, H. W., Taylor, R., and Walton, D. R. M., Nature, 357, 479 (1992).Google Scholar
10. Avent, A. G., Birkett, P. R., Crane, J. D., Darwish, A. D., Langley, G. J., Kroto, H. W., Taylor, R., and Walton, D. R. M., J. Chem. Soc., Perkin Trans. 2, 1994, in press.Google Scholar
11. Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1992 1667.Google Scholar
12. Ref. 1, pp. 432433.Google Scholar
13. Ref 1, Chapter 10.Google Scholar